
5
NetWare SFT III Support Routines

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

Support Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
AddPollingProcedureRTag . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Alloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
AllocateMappedPages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
AllocateResourceTag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
AllocBufferBelow16Meg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
AllocSemiPermMemory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
CancelInterruptTimeCallBack . . . . . . . . . . . . . . . . . . . . . . . 5-13
CancelNoSleepAESProcessEvent . . . . . . . . . . . . . . . . . . . . . 5-14
CancelSleepAESProcessEvent . . . . . . . . . . . . . . . . . . . . . . . 5-15
CCheckHardwareInterrupt . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
CDisableHardwareInterrupt . . . . . . . . . . . . . . . . . . . . . . . . 5-17
CDoEndOfInterrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
CEnableHardwareInterrupt . . . . . . . . . . . . . . . . . . . . . . . . . 5-19
ClearHardwareInterrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20
CPSemaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
CRescheduleLast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
CVSemaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23
DeAllocateMappedPages . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
DelayMyself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
DeRegisterHardwareOptions . . . . . . . . . . . . . . . . . . . . . . . . 5-26
DeRegisterServerCommDriver . . . . . . . . . . . . . . . . . . . . . . . 5-27
DisableHardwareInterrupt . . . . . . . . . . . . . . . . . . . . . . . . . . 5-28
DoEndOfInterrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-29
DoRealModeInterrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-30
EDXCallBackProcedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32
EnableHardwareInterrupt . . . . . . . . . . . . . . . . . . . . . . . . . . 5-33
Free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-34
FreeBufferBelow16Meg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-35
FreeSemiPermMemory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-36
GetCurrentTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-37
GetHardwareBusType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-38
GetNextPacketPointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-39
GetProcessorSpeedRating . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-41
GetRealModeWorkSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-42
GetServerPhysicalOffset . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-44
GetSharedMemoryLinearAddress . . . . . . . . . . . . . . . . . . . . . 5-45
OutputToScreen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-46
ParseDriverParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-48
QueueSystemAlert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-52
ReadEISAConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-54



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

ReadRoutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-55
ReceiveServerCommPointer . . . . . . . . . . . . . . . . . . . . . . . . . 5-57
RegisterForEventNotification . . . . . . . . . . . . . . . . . . . . . . . . 5-62
RegisterHardwareOptions . . . . . . . . . . . . . . . . . . . . . . . . . . 5-65
RegisterServerCommDriver . . . . . . . . . . . . . . . . . . . . . . . . . 5-67
RemovePollingProcedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-69
ReturnSharedMemoryLinearAddress . . . . . . . . . . . . . . . . . . 5-70
ScheduleInterruptTimeCallBack . . . . . . . . . . . . . . . . . . . . . 5-71
ScheduleNoSleepAESProcessEvent . . . . . . . . . . . . . . . . . . . 5-73
ScheduleSleepAESProcessEvent . . . . . . . . . . . . . . . . . . . . . . 5-75
SendServerCommCompletedPointer . . . . . . . . . . . . . . . . . . . 5-77
ServerCommDriverError . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-78
SetHardwareInterrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-80
UnRegisterEventNotification . . . . . . . . . . . . . . . . . . . . . . . . 5-82



Chapter 5 • NetWare SFT III Support Routines

Introduction

This chapter outlines the terminology and conventions used in the
support routine listing and details those support routines available to
MSL drivers.

Most of the NetWare OS support routines in this chapter are written
in C. The descriptions show the procedure and parameter names in C
syntax. Each explanation includes the parameters that must be passed
on entry to the routine, the results returned (if any), and an example.

As the examples show, the parameters are placed on the stack in the
reverse order of their definition. It is the calling routine’s responsibility
to clean up the stack on return.

As with other NetWare OS routines written in C, the EBX, EBP, ESI,
and EDI registers are preserved by the support routine. Be aware that
this is not the case for the register-based routines.

Conventions

In the support routine descriptions, important terms are used which
must be understood to design a driver to work properly with NetWare.
These terms are defined below:

Interrupts Disabled
Indicates that interrupts must be disabled when calling the
procedure. This means that no processor interrupts (excepting Non-
Maskable Interrupts) can occur. This state is often required to
maintain system and driver integrity. If not specified, interrupts
may be either enabled or disabled when calling the procedure.

Interrupts Enabled
Indicates that interrupts must be enabled when calling the
procedure. This means that processor interrupts can occur. This
state is sometimes required to ensure system and driver
interruptibility. If not specified, interrupts may be either enabled
or disabled when calling the procedure. Also, unless specifically
indicated otherwise, the interrupt enable/disable state is maintained
during the call and returned in the same state to the caller.

Blocking
Indicates the routine may cause the current thread of execution
(NetWare process) to be suspended (blocked) until a requested
function is completed (or calls other blocking system routines). At
no time can a driver’s ISR make a call to a blocking routine.

Non-Blocking
Indicates the routine will run to completion without causing the
current thread or process to be suspended.

Version 1.00 5 – 1



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Process Level
Indicates the level of execution of NetWare 386 processes or
scheduled tasks. NLMs normally execute at process level. Also, the
loader and command processor execute at process level.

Interrupt Level
Indicates an execution level caused by a processor interrupt. ISRs
executes under the identity of the process whose execution was
interrupted). Because the current process is unknown, ISRs cannot
make calls to any blocking level routines.

By the above definitions, all routines shown as blocking may only be
called from blocking process level. Also, all routines shown as non-
blocking may be called from either blocking or non-blocking process
levels. (see Chapter 2 for more information on execution levels)

Support Routines

Register-based Routines
• CancelInterruptTimeCallBack
• DisableHardwareInterrupt
• DoEndOfInterrupt
• EDXCallBackProcedure
• EnableHardwareInterrupt
• GetNextPacketPointer
• ReadEISAConfig
• ReceiveServerCommPointer
• ScheduleInterruptTimeCallBack
• SendServerCommCompletedPointer

Stack-based Routines
• AddPollingProcedureRTag
• Alloc
• AllocateMappedPages
• AllocateResourceTag
• AllocBufferBelow16Meg
• AllocSemiPermMemory
• CancelNoSleepAESProcessEvent
• CancelSleepAESProcessEvent
• CCheckHardwareInterrupt
• CDisableHardwareInterrupt
• CDoEndOfInterrupt
• CEnableHardwareInterrupt
• ClearHardwareInterrupt
• CPSemaphore
• CRescheduleLast
• CVSemaphore
• DeAllocateMappedPages
• DelayMyself

5 – 2 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

• DeRegisterHardwareOptions
• DeRegisterServerCommDriver
• DoRealModeInterrupt
• Free
• FreeBufferBelow16Meg
• FreeSemiPermMemory
• GetCurrentTime
• GetHardwareBusType
• GetProcessorSpeedRating
• GetRealModeWorkSpace
• GetServerPhysicalOffset
• GetSharedMemoryLinearAddress
• OutputToScreen
• ParseDriverParameters
• QueueSystemAlert
• ReadRoutine
• RegisterForEventNotification
• RegisterHardwareOptions
• RegisterServerCommDriver
• RemovePollingProcedure
• ReturnSharedMemoryLinearAddress
• ScheduleNoSleepAESProcessEvent
• ScheduleSleepAESProcessEvent
• ServerCommDriverError
• SetHardwareInterrupt
• UnRegisterEventNotification

Be aware of the following when coding your MSL driver.

These routines will be phased out after SFT III OS version 3.11

• AllocSemiPermMemory
• FreeSemiPermMemory
• MapAbsoluteAddressToCodeOffset
• MapAbsoluteAddressToDataOffset
• MapCodeOffsetToAbsoluteAddress
• MapDataOffsetToAbsoluteAddress

These routines are available for SFT III OS versions later than 3.11

• Alloc
• AllocateMappedPages
• DeAllocateMappedPages
• DisableHardwareInterrupt
• DoEndOfInterrupt
• EnableHardwareInterrupt
• Free
• GetServerPhysicalOffset
• GetSharedMemoryLinearAddress
• ReadEISAConfig
• ReturnSharedMemoryLinearAddress

Version 1.00 5 – 3



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

AddPollingProcedureRTag
[Blocking]

Syntax long AddPollingProcedureRTag (

void ( *DriverPollProcedure ) ( void ) ,

struct ResourceTagStructure *ResourceTag ) ;

Parameters DriverPollProcedure

Pointer to a polling procedure defined by the driver. The OS calls
this procedure at process time.

ResourceTag

Resource tag with a PollingProcedureSignature obtained by the

driver to register its polling procedure.
(see the AllocateResourceTag procedure)

Return Value EAX is zero if successful (the polling procedure was added), otherwise
the procedure failed and the driver should abort initialization.

Requirements This routine may only be called at process time, normally during
initialization.

Description The driver uses AddPollingProcedureRTag to register its polling
procedure, when one exists.

After this routine has completed successfully, the operating system
continuously calls the procedure specified by DriverPollProcedure

whenever the server has no other work to do. Because this does not
guarantee that the procedure will be called within a certain period of
time (the operating system may be busy), the driver also should include
a backup interrupt procedure to allow the driver to get immediate
attention.

There should be only one polling procedure per driver. A single polling
procedure should service all physical boards of the same type in the
server.

Example

push PollResourceTag ; polling resource tag
push OFFSET MyDriverPollProc ; pointer to polling routine
call AddPollingProcedureRTag
add esp, 2*4 ; clean up stack
or eax, eax ; check for successful completion
jnz ErrorAddingPollProcedure ; handle error if necessary

5 – 4 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

Alloc
[Non-Blocking]

Syntax void *Alloc ( long MemorySize ,

struct ResourceTagStructure *ResourceTag ) ;

Parameters MemorySize

Amount of memory (in bytes) to be allocated.

ResourceTag

Resource tag with an AllocSignature obtained by the driver for
memory allocation. (see the AllocateResourceTag procedure)

Return Value EAX points to the allocated memory. A value of zero indicates the

routine failed to allocate the requested memory.

Requirements This routine can be called at either process or interrupt time.
Interrupts may be in any state and will remain unchanged.

Description Alloc is used to dynamically allocate memory required by the driver.
The driver passes Alloc the amount of memory to be allocated and the
routine returns a pointer to the allocated memory. The allocated
memory is not initialized.

Memory allocated with this routine should be returned before the driver
is removed using the Free routine.

Example

push AllocResourceTag ; pointer to resource tag
push MyBufferSize ; amount of memory required

call Alloc ; allocate the memory

add esp, 2*4 ; restore stack
or eax, eax ; check for error allocating memory
jz ErrorAllocatingMemory ; jump if error
mov MyBufferPtr, eax ; save pointer to allocated memory

See Also Free

AllocBufferBelow16Meg, FreeBufferBelow16Meg

AllocateMappedPages, DeAllocateMappedPages

AllocateResourceTag

Version 1.00 5 – 5



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

AllocateMappedPages

Syntax void *AllocateMappedPages (

long NumberOf4KPages,

long SleepOKFlag,

long Below16MegFlag,

struct ResourceTagStructure *ResourceTag,

long *SleptFlag );

Parameters NumberOf4KPages

Number of 4K pages to allocate.

SleepOKFlag

Set to any non-zero value to allow this call to sleep (let other
processes execute temporarily) if it needs to. If the

Below16MegFlag is set, this flag must also be set; otherwise it is
optional. The advantage of setting this flag is to allow the OS to

rearrange pages if it is unable to find a continuous buffer.

Below16MegFlag

Set if the pages must be physically below the first 16 Megabyte
boundary. This is only necessary for intelligent 24-bit adapters

that must access memory through a bus mastering device.

ResourceTag

Resource tag with an AllocSignature obtained by the driver for
memory allocation. (The same resource tag used for the Alloc

routine can also be used for this routine.)

SleptFlag

Pointer to a dword to be filled in by this procedure that will
indicate if the call went to sleep. If this is not needed, set to zero.

Return Value EAX points to the allocated memory. A value of zero indicates failure;

the routine was unable to allocate memory.

Requirements This routine must only be called at process time. Interrupts may be in
any state and will remain unchanged.

Description AllocateMappedPages is used to allocate memory on 4K (page)
boundaries and, optionally, to obtain the memory below the 16
megabyte boundary. We recommend that this procedure be used
instead of AllocBufferBelow16Meg.

Memory allocated with this routine should be returned before the driver
is removed using DeAllocateMappedPages.

5 – 6 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

Example

push 0 ;null slept flag
push AllocResourceTag ;resource tag
push 0 ;no 16 meg boundary concerns
push 1 ;call can sleep if it needs to
push (MyBufferSize + 4095) SHR 12 ;convert to 4K pages

call AllocateMappedPages ;allocate memory

add esp, 5*4 ;clean up stack
or eax, eax ;buffer returned?
jz ErrorAllocatingPages ;jump if not
mov MyBufferPtr, eax ;save pointer

See Also DeAllocateMappedPages

AllocateResourceTag

Alloc, Free

AllocBufferBelow16Meg, FreeBufferBelow16Meg

Version 1.00 5 – 7



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

AllocateResourceTag
[Blocking]

Syntax struct ResourceTagStructure *AllocateResourceTag (

struct LoadDefinitionStructure *ModuleHandle ,

byte *ResourceDescriptionString ,

long ResourceSignature ) ;

Parameters ModuleHandle

The value of the ModuleHandle that was passed on the stack to the

driver when its initialization routine was called.

ResourceDescriptionString

Pointer to a null-terminated text string describing the resource for
which the tag is being allocated. The string can be a maximum of

16 characters including the null. For example:

MSLRTagMessage db ’ACME MSL Driver’,0

ResourceSignature

Value identifying a specific resource type. (listed below)

Return Value EAX points to a resource tag structure identifying the specified entry
type. A value of zero indicates failure; the operating system did not

allocate a resource tag and the driver should abort initialization.

Requirements This routine must only be called from a blocking process level (normally
during initialization).

Description In order for the driver to get resources from the OS, it must first obtain
a resource tag. A resource tag is an identifier required by the OS to
track system resources.

AllocateResourceTag provides the driver with an operating system
resource tag for a specific resource type (refer to the list below). There
are unique tags for different types of resources. The driver must use
the following resource signatures to identify each resource tag type:

AESProcessSignature equ ’PSEA’
AllocSignature equ ’TRLA’
CacheBelow16MegMemorySignature equ ’61BC’
ECBSignature equ ’SBCE’
EventSignature equ ’TNVE’
InterruptSignature equ ’PTNI’
IORegistrationSignature equ ’SROI’
MLIDSignature equ ’DILM’
MSLSignature equ ’DLSM’
PollingProcedureSignature equ ’RPLP’
SemiPermMemorySignature equ ’EMPS’
TimerSignature equ ’RMIT’

5 – 8 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

Example

DriverInitialize proc

CPush
mov ebp, esp
pushfd
cli

push MSLSignature ; resource signature (’DLSM’)
push OFFSET MSLRTagMessage ; resource message
push [ebp + Parm0] ; module handle

call AllocateResourceTag

add esp, 3*4 ; restore stack
or eax, eax ; allocation successful?
jz ErrorAllocatingRTag ; jump if error getting resource tag
mov MSLResourceTag, eax ; store pointer to tag

See Also DriverInitialize

Version 1.00 5 – 9



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

AllocBufferBelow16Meg
[Non-Blocking]

Syntax void *AllocBufferBelow16Meg (

long RequestedSize ,

long *ActualSizePtr ,

struct ResourceTagStructure *ResourceTag ) ;

Parameters RequestedSize

Amount of contiguous memory in bytes requested.

ActualSizePtr

Pointer to a location where this routine places the actual number of

bytes allocated.

ResourceTag

Resource tag with a CacheBelow16MegMemorySignature obtained

by the driver for memory allocation. (see AllocateResourceTag )

Return Value EAX points to the allocated memory. A value of zero indicates the
routine failed to allocate the memory.

Requirements This routine must only be called at process time. Interrupts may be in
any state and will remain unchanged.

Description AllocBufferBelow16Meg is used to allocate memory below the 16
megabyte boundary. The allocated memory is not initialized.

This routine allows drivers to obtain an intermediate transfer buffer for
24-bit bus master/DMA adapters running in machines with more than
16 megabytes of memory. The buffer is then used to handle all I/O data
transfers whenever the actual data source or destination is above 16
megabytes. For all other cases, drivers should call Alloc to obtain the
required memory.

Memory allocated with this routine should be returned before the driver
is removed using FreeBufferBelow16Meg.

Note: Use these buffers sparingly. The pool of buffers below 16 megabytes is
limited to 16. The size of each allocated buffer is equal to the cache
buffer size. The default cache buffer size on a server is 4K. For
example, if all 16 buffers are allocated using the default cache buffer
size, 64K of memory is allocated.

5 – 10 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

Example

push Below16MegResourceTag ; pointer to resource tag
push OFFSET ActualSize ; amount of memory acquired
push MyBufferSize ; number of bytes required

call AllocBufferBelow16Meg

add esp, 3*4 ; restore stack pointer
or eax, eax ; check if successful
jz ErrorAllocatingBuffer ; jump if error allocating memory
mov MyBufferPtr, eax ; save pointer to allocated memory

See Also FreeBufferBelow16Meg

AllocateMappedPages, DeAllocateMappedPages

Alloc, Free

AllocateResourceTag

Version 1.00 5 – 11



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

AllocSemiPermMemory
[Non-blocking]

Syntax void * AllocSemiPermMemory (

long NumberOfBytes ,

struct ResourceTagStructure *ResourceTag ) ;

Parameters NumberOfBytes

The amount of memory (in bytes) to be allocated.

ResourceTag

Resource tag with a SemiPermMemorySignature obtained by the

driver for memory allocation. (see AllocateResourceTag)

Return Value EAX is a pointer to the allocated memory or 0 if unsuccessful.

Requirements This routine must only be called at process time. It is typically used by
drivers for initialization and may not be called from the interrupt level.

Description AllocSemiPermMemory is used to allocate a block of returnable memory
required by the driver. The driver passes AllocSemiPermMemory the
amount of memory to be allocated and the routine returns a pointer to
the allocated memory. The allocated memory is not initialized.

Memory allocated with this routine should be returned before the driver
is removed using FreeSemiPermMemory.

Example

push SPMemResourceTag ;resource tag
push MyBufferSize ;amount of memory required

call AllocSemiPermMemory ;returns pointer to memory in eax

add esp, 2 * 4 ;clean up stack
or eax, eax ;check for error
jz Error ;jump on error
mov MyBufferPtr, eax ;save pointer to memory

See Also FreeSemiPermMemory

Alloc, Free

AllocateResourceTag

5 – 12 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

CancelInterruptTimeCallBack
[Non-Blocking, Register-Based Routine]

On Entry EDX must point to the TimerDataStructure corresponding to the

interrupt time callback event to be cancelled.

On Return Assume all registers are destroyed.

Requirements This routine can be called at either process or interrupt time.
Interrupts must be disabled on entry and will remain disabled.

Description The driver calls CancelInterruptTimeCallBack to cancel a callback event
previously scheduled using ScheduleInterruptTimeCallBack. This
routine removes the specified timer node from the list of events to be
called by the timer tick interrupt handler. If this routine is called but
an event was not scheduled, the OS just returns.

Remember that interrupt level callbacks must be rescheduled using
ScheduleInterruptTimeCallBack after each callback occurs, and that
this routine is normally only used to cancel a scheduled callback if it
has not yet occurred.

Example

pushfd ; save interrupt state
cli ; disable interrupts
mov edx, OFFSET MyTimerNode ; pointer to TimerDataStructure
call CancelInterruptTimeCallBack
popfd ; restore interrupt state

See Also ScheduleInterruptTimeCallBack

ScheduleNoSleepAESProcessEvent, CancelNoSleepAESProcessEvent

ScheduleSleepAESProcessEvent, CancelSleepAESProcessEvent

Version 1.00 5 – 13



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

CancelNoSleepAESProcessEvent
[Non-Blocking]

Syntax void CancelNoSleepAESProcessEvent (

struct AESEventStructure *EventNode ) ;

Parameters EventNode

Pointer to the AESEventStructure corresponding to the

non-blocking process level callback event to be cancelled.

Return Value None

Requirements This routine may be called at either process or interrupt time.
Interrupts must be disabled on entry and will remain disabled.

Description The driver calls CancelNoSleepAESProcessEvent to cancel a callback
event previously schedule using ScheduleNoSleepAESProcessEvent.
This routine removes the specified non-blocking AES event node from
the list of events to be called by the AES process handler.

Remember that non-blocking process level callbacks must be
rescheduled using ScheduleNoSleepAESProcessEvent after each callback
occurs, and that this routine is normally only used to cancel a scheduled
callback if it has not yet occurred. If this routine is called but an event
was not scheduled, the OS just returns.

Example

pushfd ; save interrupt state
cli ; disable interrupts
push OFFSET MyAESEventStructure ; address of AES structure
call CancelNoSleepAESProcessEvent
add esp, 1*4 ; adjust stack pointer
popfd ; restore interrupt state

See Also ScheduleNoSleepAESProcessEvent

ScheduleSleepAESProcessEvent, CancelSleepAESProcessEvent

ScheduleInterruptTimeCallBack, CancelInterruptTimeCallBack

5 – 14 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

CancelSleepAESProcessEvent
[Non-Blocking]

Syntax void CancelSleepAESProcessEvent (

struct AESEventStructure *EventNode ) ;

Parameters EventNode

Pointer to the AESEventStructure corresponding to the blocking

process level callback event to be cancelled.

Return Value None

Requirements This routine may be called at either process or interrupt time.
Interrupts must be disabled on entry and will remain disabled.

Description The driver calls CancelSleepAESProcessEvent to cancel a callback event
previously schedule using ScheduleSleepAESProcessEvent. This routine
removes the specified blocking AES event node from the list of events
to be called by the AES process handler.

Remember that blocking process level callbacks must be rescheduled
using ScheduleSleepAESProcessEvent after each callback occurs, and
that this routine is normally only used to cancel a scheduled callback
if it has not yet occurred. If this routine is called but an event was not
scheduled, the OS just returns.

Example

pushfd ; save interrupt state
cli ; disable interrupts
push OFFSET MyAESEventStructure ; address of AES structure
call CancelSleepAESProcessEvent
add esp, 1*4 ; adjust stack pointer
popfd ; restore interrupt state

See Also ScheduleSleepAESProcessEvent

ScheduleNoSleepAESProcessEvent, CancelNoSleepAESProcessEvent

ScheduleInterruptTimeCallBack, CancelInterruptTimeCallBack

Version 1.00 5 – 15



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

CCheckHardwareInterrupt
[Non-blocking]

Syntax long CCheckHardwareInterrupt ( InterruptLevel ) ;

Parameters InterruptLevel

Specifies the Interrupt Level to be checked for a pending request.

Return Value EAX is zero if no interrupt request is active for the specified interrupt

level. A non-zero value indicates an interrupt request.

Requirements Interrupts must be disabled on entry and will remain disabled.

Description CCheckHardwareInterrupt determines if an interrupt request is
currently being made to the Programmable Interrupt Controller (PIC)
assigned to the indicated interrupt level. The PIC should normally
have this level masked off while this call is made (interrupt will not be
recorded by the PIC). This routine returns a value indicating the
interrupt request status. A return value of zero indicates that the PIC
has no interrupt request being made to it.

Example

push IRQLevel ;interrupt level (0-15)
call CCheckHardwareInterrupt ;determine if active request
add esp, 1 * 4 ;clean up stack
or eax, eax ;check status

jz NoInterruptRequest

See Also CDisableHardwareInterrupt, CEnableHardwareInterrupt

CDoEndOfInterrupt

5 – 16 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

CDisableHardwareInterrupt
[Non-Blocking]

Syntax void CDisableHardwareInterrupt ( InterruptLevel ) ;

Parameters InterruptLevel

Specifies the Interrupt Level to be masked off.

Return Value None

Requirements This routine can be called at either process or interrupt time.
Interrupts must be disabled on entry and will remain disabled
throughout this routine.

Description This routine masks off the specified interrupt request line on the
programmable interrupt controller, preventing the adapter from
interrupting the driver.

This routine is not needed if the adapter runs on an edge-triggered
interruptible bus and provides a command to disable its interrupt line.

Note: Novell recommends disabling interrupts at the adapter if possible.
Disabling interrupts at the PIC is typically slower.

Example

DriverISR proc

movzx eax, BYTE PTR DriverConfiguration.CInterrupt
push eax
call CDisableHardwareInterrupt
call CDoEndOfInterrupt
•
• (Service the adapter)
•
movzx eax, BYTE PTR DriverConfiguration.CInterrupt
push eax
call CEnableHardwareInterrupt
ret

DriverISR endp

See Also DisableHardwareInterrupt

CEnableHardwareInterrupt, EnableHardwareInterrupt

CDoEndOfInterrupt, DoEndOfInterrupt

Version 1.00 5 – 17



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

CDoEndOfInterrupt
[Non-Blocking]

Syntax void CDoEndOfInterrupt ( InterruptLevel ) ;

Parameters InterruptLevel

Specifies the Interrupt Level for the EOI command(s).

Return Value None

Requirements Interrupts must be disabled on entry and will remain disabled
throughout this routine.

Description This routine issues appropriate End of Interrupt (EOI) commands to the
associated interrupt controller for the level indicated. If the level is
assigned to a secondary PIC, an EOI will be issued to the secondary
PIC, then to the primary PIC. Use of this routine (instead of placing
the code in the driver) allows flexibility when a driver runs on several
platforms and ensures that this function is executed correctly.

Example

DriverISR proc

movzx eax, BYTE PTR DriverConfiguration.CInterrupt
push eax
call CDisableHardwareInterrupt
call CDoEndOfInterrupt
•
• (Service the adapter)
•
movzx eax, BYTE PTR DriverConfiguration.CInterrupt
push eax
call CEnableHardwareInterrupt
ret

DriverISR endp

See Also CEnableHardwareInterrupt, CDisableHardwareInterrupt

DoEndOfInterrupt, EnableHardwareInterrupt

DisableHardwareInterrupt

5 – 18 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

CEnableHardwareInterrupt
[Non-Blocking]

Syntax void CEnableHardwareInterrupt ( InterruptLevel ) ;

Parameters InterruptLevel

Specifies the Interrupt Level to be unmasked (enabled).

Return Value None

Requirements This routine can be called at either process or interrupt time.
Interrupts must be disabled on entry and will remain disabled
throughout this routine.

Description The driver calls this routine to unmask (enable) the adapter’s interrupt
request line on the Programmable Interrupt Controller.

Note: Novell recommends disabling/enabling interrupts at the adapter if
possible. Disabling/enabling interrupts at the PIC is typically slower.

Example

DriverISR proc

movzx eax, BYTE PTR DriverConfiguration.CInterrupt
push eax
call CDisableHardwareInterrupt
call CDoEndOfInterrupt
•
• (Service the adapter)
•
movzx eax, BYTE PTR DriverConfiguration.CInterrupt
push eax
call CEnableHardwareInterrupt
ret

DriverISR endp

See Also CDisableHardwareInterrupt, CDoEndOfInterrupt

EnableHardwareInterrupt, DoEndOfInterrupt

DisableHardwareInterrupt

Version 1.00 5 – 19



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

ClearHardwareInterrupt
[Non-Blocking]

Syntax long ClearHardwareInterrupt (

long HardwareInterruptLevel,

void ( *InterruptProcedure ) ( void ) ;

Parameters HardwareInterruptLevel

IRQ level of the hardware interrupt.

InterruptProcedure

Pointer to the driver’s interrupt procedure.

Return Value If EAX is equal to zero, the hardware interrupt was successfully

removed. A non-zero value means the interrupt vector was not cleared
because of invalid parameters or the vector was not found.

Requirements This routine must only be called at process time (typically during
initialization). Interrupts must be disabled on entry.

Description ClearHardwareInterrupt releases a processor hardware interrupt
previously allocated using SetHardwareInterrupt. This routine is called
during the DriverRemove procedure when the driver is unloading or
when the initialization procedure fails after an interrupt had been set.

Example

push OFFSET DriverISR ; interrupt service routine
movzx eax, BYTE PTR DriverConfiguration.CInterrupt
push eax ; interrupt number
call ClearHardwareInterrupt
add esp, 2*4 ; restore stack
or eax, eax ; check for errors
jnz ErrorReleasingInterrupt

See Also SetHardwareInterrupt

5 – 20 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

CPSemaphore
[Blocking]

Syntax void CPSemaphore ( long SemaphoreNumber ) ;

Parameters SemaphoreNumber

Pointer to the semaphore.

Return Value None

Requirements This routine may only be called from a blocking process level.
Interrupts may be in any state on entry and are preserved on return.
However, during the call interrupts will be disabled.

Description CPSemaphore is used to lock the real mode workspace when performing
a real mode interrupt (such as an EISA BIOS call). For more
information on how to use this procedure, refer to Appendix C.

Do not use this call to handle critical sections local to the driver.

Example

push WorkSpaceSemaphore ; load semaphore
call CPSemaphore ; lock workspace for our use
add esp, 1*4 ; restore stack

See Also GetRealModeWorkSpace

DoRealModeInterrupt

CVSemaphore

Version 1.00 5 – 21



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

CRescheduleLast
[Blocking]

Syntax void CRescheduleLast ( void ) ;

Parameters None

Return Value None

Requirements This routine must only be called from the blocking process level as it
will suspend the process and could change the machine state.
Interrupts may be in any state on entry and that state is preserved on
return. However, the interrupt state may be altered during execution
of this procedure.

Description CRescheduleLast places the current task (the current driver process)
last on the list of active tasks to be executed. Since the NetWare OS is
non-preemptive, all driver processes normally run to completion. If a
driver task requires too much execution time (i.e. retry loops), other
scheduled processes may not execute in a timely manner. This routine
can be used to temporarily release control so other scheduled tasks can
execute (keeping vital OS processes working).

CRescheduleLast is normally used in conjunction with AESSleepEvents

or in the driver initialization or remove procedures. The following
example illustrates this call in a retry loop that attempts to redeliver
a message to the OS after it has been placed on hold.

Example

HoldOffMessageDelivery:

mov HoldOffLoopCount, HOLDOFF_COUNT

HoldOffLoop:

call CRescheduleLast ; Let other scheduled tasks execute
dec HoldOffLoopCount ; we regain control here
jnz HoldOffLoop

;Try to deliver the message to the OS

;If OS returns a "Holdoff Message" status again...

jmp HoldOffMessageDelivery

See Also DelayMyself

5 – 22 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

CVSemaphore
[Non-Blocking]

Syntax void CVSemaphore ( long SemaphoreNumber ) ;

Parameters SemaphoreNumber

Pointer to the semaphore.

Return Value None

Requirements Interrupts may be in any state on entry and are preserved on return.
However, during the call interrupts will be disabled.

Description CVSemaphore clears a semaphore that was set with CPSemaphore.

Normally, CVSemaphore is used when the driver has finished
performing a real mode interrupt (such as an EISA BIOS call) so that
other processes can be allowed to use the workspace. For more
information on how to use this procedure, refer to Appendix C.

Example

push WorkSpaceSemaphore ; load semaphore
call CVSemaphore ; unlock workspace
add esp, 1*4 ; restore stack

See Also GetRealModeWorkSpace

CPSemaphore

DoRealModeInterrupt

Version 1.00 5 – 23



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

DeAllocateMappedPages

Syntax void DeAllocateMappedPages ( void *BufferPointer ) ;

Parameters BufferPointer

Pointer to the buffer to free.
(must have been allocated with AllocateMappedPages)

Return Value None

Description The driver must use this routine to return any memory buffers that
were previously allocated on 4K page boundaries using the
AllocateMappedPages procedure.

Example

push MyBufferPtr ;pointer to buffer
call DeAllocateMappedPages ;deallocate memory
add esp, 1*4 ;clean up stack

See Also AllocateMappedPages

Alloc, AllocBufferBelow16Meg

Free, FreeBufferBelow16Meg

5 – 24 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

DelayMyself
[Blocking]

Syntax void DelayMyself (

long TimerTicks ,

struct ResourceTagStructure *TimerResourceTag ) ;

Parameters TimerTicks

Value indicating number of 1/18th second timer ticks to put this
process to sleep (minimum time before return).

TimerResourceTag

Timer resource tag allocated by the driver during initialization.

Return Value None

Requirements This routine may only be called from a blocking process level.
Interrupts may be in any state on entry and are preserved on return.
However, interrupts might be enabled during this call.

Description This routine delays the current process for the number of timer ticks
specified by putting the current running process (the caller) to sleep.
Return is made following expiration of the specified number of ticks.
This routine is called to prevent a process from dominating the
computer resources and preventing other vital processes from running.
It also provides a specific minimum delay before the process is re-
awakened, which may be helpful for tasks where some function will not
complete for at least a specified period.

Example

push TimerResourceTag ;identify this driver
push Ticks ;time to sleep
call DelayMyself ;delay # ticks indicated
add esp, 2 * 4 ;clean up stack

See Also CRescheduleLast, AllocateResourceTag

Version 1.00 5 – 25



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

DeRegisterHardwareOptions
[Blocking]

Syntax void DeRegisterHardwareOptions (

struct IOConfigurationStructure *IOConfig ) ;

Parameters IOConfig

Pointer to the IOConfigurationStructure that contains the adapter’s

hardware configuration to be deregistered.

Return Value None

Requirements This procedure must only be called from the blocking process level.
Interrupts must be disabled.

Description DeRegisterHardwareOptions releases the previously reserved hardware
options specified in the adapter’s IOConfigurationStructure. This
routine is usually called from the driver’s remove procedure.

Example

DriverRemove proc

CPush
pushfd
cli

push OFFSET DriverConfiguration
call DeRegisterHardwareOptions
add esp, 1*4

popfd
CPop
ret

DriverRemove endp

See Also RegisterHardwareOptions, ParseDriverParameters

5 – 26 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

DeRegisterServerCommDriver
[Blocking]

Syntax long DeRegisterServerCommDriver ( MSLResourceTag ) ;

Parameters MSLResourceTag

MSL resource tag allocated by the driver for RegisterServer-

CommDriver.

Return Value EAX is zero if the driver was successfully deregistered. A non-zero
value indicates failure due to invalid parameters or the driver was not

previously registered.

Requirements This routine must only be called from a blocking process level.
Interrupts must be disabled on entry.

Description This procedure deregisters the driver from the Mirrored Server Link
interface. DeRegisterServerCommDriver is normally called from the
DriverRemove routine when the driver is unloaded. The SFT III
operating system will be notified that the driver is no longer available
for communications.

Example

push MSLResourceTag
call DeRegisterServerCommDriver ;tell OS driver no longer available
add esp, 1 * 4

See Also RegisterServerCommDriver

Version 1.00 5 – 27



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

DisableHardwareInterrupt
[Non-Blocking, Register-Based Routine]

On Entry ECX specifies the interrupt level to be masked off (disabled).

On Return EAX and EDX are destroyed; all other registers are preserved.

Requirements This routine can be called at either process or interrupt time.
Interrupts must be disabled on entry and will remain disabled
throughout this routine.

Description The driver calls this routine to mask off (disable) the adapter’s
interrupt request line on the Programmable Interrupt Controller (PIC).
This routine is not needed if the adapter runs on an edge-triggered
interruptible bus and provides a command to disable its interrupt line.

Note: Novell recommends disabling interrupts at the adapter if possible.
Disabling interrupts at the PIC is typically slower.

Example

DriverISR proc

mov ecx, InterruptLevel
call DisableHardwareInterrupt
call DoEndOfInterrupt

(Service the adapter)

mov ecx, InterruptLevel
call EnableHardwareInterrupt
ret

DriverISR endp

See Also EnableHardwareInterrupt, DoEndOfInterrupt

5 – 28 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

DoEndOfInterrupt
[Non-Blocking, Register-Based Routine]

On Entry ECX specifies the interrupt level for the EOI command(s).

On Return EAX and EDX are destroyed; all other registers are preserved.

Requirements This routine can be called at either process or interrupt time.
Interrupts must be disabled on entry and will remain disabled
throughout this routine.

Description This routine issues the appropriate End of Interrupt (EOI) commands
to the PIC (programmable interrupt controller) for the interrupt level
specified. If the level is assigned to a secondary PIC, an EOI will be
issued to the secondary PIC, then to the primary PIC. Use of this
routine (instead of placing the code in the driver) allows flexibility when
a driver runs on several platforms and ensures that this function is
executed correctly.

Example

DriverISR proc

mov ecx, InterruptLevel
call DisableHardwareInterrupt
call DoEndOfInterrupt

(Service the adapter)

mov ecx, InterruptLevel
call EnableHardwareInterrupt
ret

DriverISR endp

See Also EnableHardwareInterrupt, DisableHardwareInterrupt

Version 1.00 5 – 29



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

DoRealModeInterrupt
[Blocking]

Syntax long DoRealModeInterrupt (

struct InputParameterStructure *InputParameters ,

struct OutputParameterStructure *OutputParameters ) ;

Parameters InputParameters

Pointer to an InputParameter structure filled in with the register
values required upon entry to the interrupt routine being called.

InputParameterStructure struc
IAXRegister dw ?
IBXRegister dw ?
ICXRegister dw ?
IDXRegister dw ?
IBPRegister dw ?
ISIRegister dw ?
IDIRegister dw ?
IDSRegister dw ?
IESRegister dw ?
IntNumber db ?

InputParameterStructure ends

OutputParameters

Pointer to an OutputParameter structure to be filled in by the

interrupt routine with any register values returned.

OutputParameterStructure struc
OAXRegister dw ?
OBXRegister dw ?
OCXRegister dw ?
ODXRegister dw ?
OBPRegister dw ?
OSIRegister dw ?
ODIRegister dw ?
ODSRegister dw ?
OESRegister dw ?
OFlags dw ?

OutputParameterStructure ends

Return Value EAX is zero (0) if the interrupt vector is called successfully. A value of

one (1) indicates the interrupt vector is no longer available because
DOS has been removed. For some calls, certain OuputParameter

values may also indicate success or failure.

Requirements This routine must only be called from a blocking process level (normally
during initialization). It may enable interrupts.

Description DoRealModeInterrupt is used to perform real mode interrupts, such as
BIOS and DOS interrupts. It will suspend server activity, switch to
real mode, effect the interrupt, switch back to protected mode, and
allow the server to resume activity.

5 – 30 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

EISA boards use DoRealModeInterrupt to perform an INT 15h BIOS
call that obtains the board configuration. (For more information on how
to use this procedure, refer to Appendix C)

Example

Note: The input parameter structure has already been initialized with the
values required by the interrupt routine being executed.

push OFFSET OutputParameters ; place pointer on stack
push OFFSET InputParameters ; place pointer on stack

call DoRealModeInterrupt

add esp, 2 * 4 ; clean up stack
or eax, eax ; check for error
jnz RealModeInterruptError ; handle error if necessary

See Also CPSemaphore, CVSemaphore, GetRealModeWorkSpace

Version 1.00 5 – 31



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

EDXCallBackProcedure
[Non-Blocking, Register-Based Routine]

Syntax call edx

On Entry The registers must contain the message header values:

EAX OS Parameter1
EBX OS Parameter2
ECX OS Parameter3 (message data length)
EDX OS Parameter4 (pointer to the callback procedure)
ESI OS Parameter5 (message destination pointer)
EDI n/a
EBP n/a
FLAGS

On Return Assume all registers are destroyed.

Requirements This routine is called from the interrupt level. Interrupts must be
disabled on entry and are disabled on return.

Description This procedure is called when the OS is notified of a received message
(via the ReceiveServerCommPointer procedure) and a completion code
of 1 is returned. A code of 1 indicates the driver must copy the message
data from the adapter to system RAM and callback the procedure
specified by EDX. This will return control to certain operating system
receive procedures after the data has been copied.

On entry to this procedure, the registers must be set to the values
contained in the original message header sent from the other server
(with the exception of ECX and ESI which may have been modified
during the ReceiveServerCommPointer routine).

Note: The DriverSend procedure may be called from within this
callback routine, but will not enable interrupts.

Example

(See the ReceiveServerCommPointer example for an implementation of the
EDX callback procedure)

See Also ReceiveServerCommPointer, DriverISR

5 – 32 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

EnableHardwareInterrupt
[Non-Blocking, Register-Based Routine]

On Entry ECX specifies the interrupt level to be unmasked (enabled).

On Return EAX and EDX are destroyed; all other registers are preserved.

Requirements This routine can be called at either process or interrupt time.
Interrupts must be disabled on entry and will remain disabled
throughout this routine.

Description The driver calls this routine to unmask (enable) the adapter’s interrupt
request line on the Programmable Interrupt Controller (PIC).

Note: Novell recommends disabling and enabling interrupts at the adapter if
possible. Controlling interrupts at the PIC is typically slower.

Example

DriverISR proc

mov ecx, InterruptLevel
call DisableHardwareInterrupt
call DoEndOfInterrupt

(Service the adapter)

mov ecx, InterruptLevel
call EnableHardwareInterrupt
ret

DriverISR endp

See Also DisableHardwareInterrupt, DoEndOfInterrupt

Version 1.00 5 – 33



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Free
[Non-Blocking]

Syntax void Free ( void *MemoryPtr ) ;

Parameters MemoryPtr

Pointer to the allocated memory to be released.

(Must be memory previously allocated by the Alloc procedure.)

Return Value None

Requirements This routine may be called at either process or interrupt time.
Interrupts may be in any state and will remain unchanged.

Description Free returns a block of memory that was previously allocated by the
driver using the Alloc routine. Drivers must free all allocated memory
before exiting (typically during the DriverRemove procedure).

Example

push MyBufferPtr ; place pointer to memory on stack
call Free
add esp, 1*4 ; restore stack

See Also Alloc

AllocBufferBelow16Meg, FreeBufferBelow16Meg

AllocateMappedPages, DeAllocateMappedPages

5 – 34 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

FreeBufferBelow16Meg
[Non-Blocking]

Syntax void FreeBufferBelow16Meg ( void *MemoryPtr );

Parameters MemoryPtr

Pointer to the allocated memory to be released.

(Must be memory previously allocated by AllocBufferBelow16Meg.)

Return Value None

Requirements This routine may be called at either process or interrupt time.
Interrupts may be in any state and will remain unchanged.

Description FreeBufferBelow16Meg returns a block of memory that was previously
allocated by the driver using the AllocBufferBelow16Meg routine. These
routines are used by drivers that support 24-bit Bus Master or DMA
adapters running in machines with more than 16 megabytes of memory.

Drivers must free all allocated memory before exiting (typically during
the DriverRemove procedure).

Example

push MyBelow16MegMemoryPtr ; pointer to memory
call FreeBufferBelow16Meg
add esp, 1*4 ; adjust stack pointer

See Also AllocBufferBelow16Meg

Alloc, Free

AllocateMappedPages, DeAllocateMappedPages

Version 1.00 5 – 35



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

FreeSemiPermMemory
[Non-Blocking]

Syntax void FreeSemiPermMemory ( void *MemoryPtr );

Parameters MemoryPtr

Pointer to the allocated memory to be released.

(Must be memory previously allocated by AllocSemiPermMemory.)

Return Value None

Requirements This routine must only be called at process time. Interrupts may be in
any state and will remain unchanged.

Description FreeSemiPermMemory returns a block of memory that was previously
allocated by the driver using the AllocSemiPermMemory routine.
Drivers must free all allocated memory before exiting (typically during
the DriverRemove procedure).

Example

push MyMemoryPtr ; pointer to memory
call FreeSemiPermMemory
add esp, 1*4 ; adjust stack pointer

See Also AllocSemiPermMemory

Alloc, Free

AllocateMappedPages, DeAllocateMappedPages

5 – 36 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

GetCurrentTime
[Non-Blocking]

Syntax long GetCurrentTime ( void ) ;

Parameters None

Return Value EAX contains the number of clock ticks (1 tick ≈ 1/18th second) since

the server was last loaded and began execution.

Requirements None

Description GetCurrentTime can be used to determine the elapsed time (in ticks) for
driver-related events (such as timeout checks). The current time value
minus the value returned at the start of an operation is the elapsed
time in 1/18th second clock ticks. This timer requires more than
7 years to roll over, allowing it to be used for elapsed time comparisons.

Example

call GetCurrentTime ; get transmit start time for
mov TransmitStartTime, eax ; timeout checking

Version 1.00 5 – 37



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

GetHardwareBusType
[Non-Blocking]

Syntax long GetHardwareBusType ( void ) ;

Parameters None

Return Value EAX contains a value indicating the bus type.

0 = ISA (Industry Standard Architecture)
1 = MCA (Micro-Channel Architecture)
2 = EISA (Extended Industry Standard Architecture)

Requirements This routine can be called at either process or interrupt time.
Interrupts may be in any state on entry and will remain unchanged.

Description GetHardwareBusType returns a value indicating the processor bus type.

This routine would allow a single driver to support boards for different
bus types, which, following initialization and configuration, appear
identical to the driver.

Example

call GetHardwareBusType
mov HardwareBusType, eax ; store returned value

5 – 38 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

GetNextPacketPointer
[Non-Blocking, Register-Based Routine]

Syntax call [GetNextPacketPointer]

On Entry None (The driver should be ready to have its BuildSend routine called)

On Return Assume all registers are destroyed. Upon return, the driver should

send the built packet.

Requirements This routine is called from interrupt level. Interrupts must be disabled
on entry.

Description GetNextPacketPointer is a global variable defined by the OS. It contains
a pointer to the current OS routine used to obtain any messages queued
for transmission.

After the driver receives an acknowlegement from the other server for
a message (or group of messages) previously sent, it notifies the OS of
the acknowledgements via SendServerCommCompletedPointer. The
driver must then check if the OS queued up any messages while it was
busy transmitting that last message.

The OS indicates the size of the next queued message (excluding
headers) using the PacketSizeNowAvailable variable. If no messages
are queued for transmission, this value is negative. (A value of zero
indicates a message header only with no message data.) The size of the
message will always be less than or equal to the maximum data size
the MSL driver is capable of sending.

If there are messages queued, the driver must make an indirect call to
this routine. Calling this procedure initiates a possible multimessage
building sequence. During the GetNextPacket routine, the DriverBuild-
Send procedure is called repeatedly to build the multimessage packet.
GetNextPacket will stop calling the DriverBuildSend routine only when
the driver indicates, through the value in PacketSizeDriverCan-
NowHandle, that it has no more room for additional messages, or when
the OS has no more messages to send. (See the flow chart and
explanation of building a multimessage packet in Chapter 4, under the
DriverBuildSend procedure)

See Also DriverBuildSend, DriverISR

GetNextPacketPointer global variable (defined in Chapter 3)

Version 1.00 5 – 39



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Example

DriverISR proc

;****************************************************************************
;* Acknowledgement Received *
;****************************************************************************

ISRAckReceived:

cmp MessageInProgress, TRUE ;validate ack
jne CheckAdapterStatus ;

;************************************************************************
;* Cancel Message TimeOut Sequence *
;************************************************************************

mov MessageInProgress, FALSE ;clear flag
mov TimeOutEvent.MessageTimeOutTime, 0 ;stop meessage timer

;************************************************************************
;* Notify OS of the acknowledgement(s) *
;************************************************************************

mov ebp, TxPacketMessageCount ;get # of messages sent
add ReceiveAckCount, ebp ;update statistics counter
call [SendServerCommCompletedPointer] ;notify OS of ACKs

;(use indirect call)

;************************************************************************
;* Transmit any queued messages in possible multi-message packet *
;************************************************************************

mov PacketSizeDriverCanNowHandle, MAX_PACKET_SIZE ;size MSL can send
cmp PacketSizeNowAvailable, MAX_PACKET_SIZE ;anything queued?
ja CheckAdapterStatus ;jump if not

;(Set up any variables for the DriverBuildSend routine: Typically, set
; ptr to next transmit buffer, and reset any message counters to zero.)

mov TxPacketMessageCount, 0
call [GetNextPacketPointer] ;start BuildSend sequence

; (using indirect call)
mov PacketSizeDriverCanNowHandle, -1 ;semaphore no more sends

;At this point one or messages have been built in the packet via repeated
;calls to the DriverBuildSend Routine and are ready for transmission.

;************************************************************************
;* Transmit the message packet and start a transmit timeout sequence *
;************************************************************************

call TransmitMessagePacket ;(see template)

inc TransmitBurstPacketCount ;update statistics counter
jmp CheckAdapterStatus

5 – 40 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

GetProcessorSpeedRating
[Non-Blocking]

Syntax long GetProcessorSpeedRating ( void ) ;

Parameters None

Return Value EAX contains a value representing the relative processor speed of the

machine. A value of zero indicates the routine failed to determine the

processor speed.

Requirements This routine may be called at either process or interrupt time.
Interrupts can be in any state on entry and will not be changed during
the routine.

Description GetProcessorSpeedRating is used to determine the relative processor
speed. The larger the value returned, the faster the processor can
operate. Some drivers may need to use GetProcessorSpeedRating to
calculate the correct delay for certain timing loops.

Example

call GetProcessorSpeedRating
mov ProcessorSpeedAdjust, eax ; save returned processor speed

Version 1.00 5 – 41



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

GetRealModeWorkSpace
[Non-Blocking]

Syntax void GetRealModeWorkSpace (
struct SemaphoreStructure *WorkSpaceSemaphore ,
long *WorkSpaceProtectedModeAddress ,
word *WorkSpaceRealModeSegment ,
word *WorkSpaceRealModeOffset ,
long *WorkSpaceSize ) ;

Parameters The driver must provide the following variables. On entry, the driver
passes this routine pointers to these variables. This routine then fills
in the variables with the appropriate values as described below.

WorkSpaceSemaphore dd 0
WorkSpaceProtectedModeAddress dd 0
WorkSpaceRealModeSegment dw 0
WorkSpaceRealModeOffset dw 0
WorkSpaceSize dd 0

WorkSpaceSemaphore
Pointer to the operating system semaphore structure.

WorkSpaceProtectedModeAddress
32-bit logical address of the workspace.

WorkSpaceRealModeSegment
Real mode segment of the workspace.

WorkSpaceRealModeOffset
Real mode offset in the workspace segment.

WorkSpaceSize
Size of the workspace.

Return Value None (all values are returned through the parameters)

Requirements This routine can be called at either process or interrupt time.
Interrupts can be in any state and will remain unchanged.

Description The GetRealModeWorkSpace routine is used in conjunction with
DoRealModeInterrupt to allow the driver access to memory in real
mode. NetWare drivers run in protected mode and do not allow direct
access to BIOS based information. The call DoRealModeInterrupt
allows the driver to access the BIOS.

DoRealModeInterrupt turns on the system interrupts and executes in
a critical section; therefore, semaphore routines--CPSemaphore and
CVSemaphore are called in order to keep other processes out of the
workspace. (For more information on how to use this procedure, refer
to Appendix C)

5 – 42 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

Example

;**************************************************************************
; Get realmode workspace
;**************************************************************************

push OFFSET WorkSpaceSize ; size of workspace
push OFFSET WorkSpaceRealModeOffset ; offset to real mode
push OFFSET WorkSpaceRealModeSegment ; real mode segment address
push OFFSET WorkSpaceProtectedModeAddress ; address in protected mode
push OFFSET WorkSpaceSemaphore ; semaphore
call GetRealModeWorkSpace
add esp, 5*4 ; clean up stack

;**************************************************************************
; Lock the workspace
;**************************************************************************

push WorkSpaceSemaphore ; load semaphore
call CPSemaphore ; lock workspace
add esp, 1*4 ; clean up stack

;**************************************************************************
; Setup and execute real mode interrupt
;**************************************************************************

movzx eax, WorkSpaceRealModeSegment ; get WorkSpace segment
movzx ebx, WorkSpaceRealModeOffset ; get offset into segment
mov cl, SlotToReadConfiguration ; get slot number
xor ch, ch ; read first block
mov esi, OFFSET InputParms ; point to input area
mov [esi].IAXRegister, 0D801h ; EISA read configuration
mov [esi].ICXRegister, cx ; slot and data block
mov [esi].ISIRegister, bx ; offset of DosWorkarea
mov [esi].IDSRegister, ax ; segment of DosWorkArea
mov [esi].IntNumber, 15h ; interrupt number

push OFFSET OutputParms ; pointer to output regs
push OFFSET InputParms ; pointer to input regs
call DoRealModeInterrupt
add esp, 2*4 ; clear up stack
or eax, eax ; error check
jnz IntNotValidErrorExit ; error path

cmp BYTE PTR OutputParms.OAXRegister+1, 0 ; BIOS Int 15h return
jne IntNotValidErrorExit ; successful ?

mov esi, WorkSpaceProtectedModeAddress ; load pointer to data
movzx ecx, BYTE PTR [esi + INTERRUPTOFFSET] ; get int if any
and cl, ISOLATEINTMASK ; isolate interrupt level
jecxz NoAddInterrupt ; if none skip add
mov SaveInterrupt, cl ; save interrupt for later

;**************************************************************************
; Unlock interrupt
;**************************************************************************

NoAddInterrupt:
push WorkSpaceSemaphore ; pass semaphore
call CVSemaphore ; unlock workspace
add esp, 1*4 ; clean up stack

Version 1.00 5 – 43



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

GetServerPhysicalOffset
[Non-Blocking]

Syntax long GetServerPhysicalOffset ( void ) ;

Parameters None

Return Value EAX contains a 32-bit physical address of the operating system’s logical

address 0.

Requirements This routine may be called at either process or interrupt time.
Interrupts may be in any state on entry and will remain unchanged.

Description GetServerPhysicalOffset returns the physical address of the operating
system’s logical address 0. Use this value to convert physical addresses
to logical addresses and vice versa.

To find the physical address given a logical offset, add the address this
routine returns to the logical address. To find the logical address given
a physical address, subtract the value returned from the physical
address. For example:

PhysicalAddress = LogicalAddress + GetServerPhysicalOffset ( ) ;

LogicalAddress = PhysicalAddress – GetServerPhysicalOffset ( ) ;

The value that GetServerPhysicalOffset returns could be necessary in
making address conversions during the initialization of DMA channels
and bus mastering devices, and in the validation of specified hardware
options.

Example

call GetServerPhysicalOffset
mov ServerPhysicalOffset, eax

5 – 44 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

GetSharedMemoryLinearAddress
[Non-Blocking]

Syntax long GetSharedMemoryLinearAddress (

long SharedMemoryPhysicalAddress,

long Size ) );

Parameters SharedMemoryPhysicalAddress

32-bit physical address.

Size

Size of the shared memory space.

Return Value EAX contains a logical 32-bit address relative to the operating system’s

assignment of address 0h.

Requirements

Description GetSharedMemoryLinearAddress returns the 32-bit logical address
assigned to the physical address passed to the routine.

Note: Although the MLID may get this address, it may not be able to access
it. For example, if the driver used this call to access shared RAM prior
to registering hardware options, a page-fault exception would occur.

Example

push SharedRAMSize
push SharedRAMPhysicalAddress
call GetSharedMemoryLinearAddress ;EAX = address to use
add esp, 2*4 ;Restore stack
mov SharedRAMLogicalAddress, EAX

Version 1.00 5 – 45



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

OutputToScreen
[Non-Blocking]

Syntax long OutputToScreen (

struct ScreenStruct *ScreenHandle ,

char *ControlString ,

args... ) ;

Parameters ScreenHandle

ScreenHandle that NetWare passed on the stack to the driver’s

initialization routine at load time.

ControlString

Pointer to a null-terminated ASCII string (similar to the standard
printf string).

args...

Procedure can take a variable number of arguments as required by

the control string format specifiers.

Return Value EAX is zero if successful. A non-zero value indicates an error has

occurred.

Requirements This routine must only be called during DriverInitialize, since the
driver’s ScreenHandle is valid only during the initialization routine.

Description OutputToScreen is used to display a driver error message on the server
console screen using standard printf formatting.

Drivers should not display non-vital messages and should limit the
number of lines output to the screen for essential messages. Displaying
unneeded output will cause important information to scroll off the
screen.

ControlString can be embedded with returns, line feeds, bells, tabs, and
% specifiers (except floating point). However, if strings contain
embedded substrings, numbers and control information, they must be
limited in length to a maximum of 200 characters. Longer strings than
this will cause the server to abend. If longer strings are necessary, split
the string into several strings and call OutputToScreen multiple times.

5 – 46 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

Example

DriverInitialize proc

CPush
mov ebp, esp
pushfd
cli

PrintErrorMessage:

push OFFSET MyErrorMessage ; push offset to message
push [ebp + Parm1] ; screen handle
call OutputToScreen
add esp, 2*4 ; restore stack

DriverInitialize proc

See Also QueueSystemAlert

Version 1.00 5 – 47



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

ParseDriverParameters
[Blocking]

Syntax long ParseDriverParameters (

struct IOConfigurationStructure *IOConfig,

void unused1,

struct AdapterOptionStructure *AdapterOptions,

void unused2,

void unused3,

long NeedsBitMap,

byte *CommandLine,

struct ScreenStruct *ScreenHandle );

Parameters *IOConfig

Pointer to adapter’s IOConfigurationStructure. The structure must

be initialized and contain a valid IOResourceTag. (See Chapter 3
for a description of the IOConfigurationStructure)

*AdapterOptions

Pointer to the driver’s AdapterOptionStructure. A driver typically

maintains one option structure, although multiple structures may
be used if the driver supports more than one adapter type requiring

different parameters.

The AdapterOptionStructure is defined as follows:

AdapterOptionStructure struc
IOSlot dd ? ;MCA or EISA slot #
IOPort0 dd ? ;I/O port base
IOLength0 dd ? ;range (# ports)
IOPort1 dd ? ;2nd I/O port base
IOLength1 dd ? ;range (# ports)
MemoryDecode0 dd ? ;memory (SRAM/EPROM)
MemoryLength0 dd ? ;range (paragraphs)
MemoryDecode1 dd ? ;2nd memory base
MemoryLength1 dd ? ;range (paragraphs)
Interrupt0 dd ? ;Interrupt #
Interrupt1 dd ? ;2nd Int #
DMA0 dd ? ;DMA channel
DMA1 dd ? ;2nd DMA channel

AdapterOptionStructure ends

Each field in the above structure is a pointer to a table of valid

options for that parameter. If a parameter is not required or used
by the driver/adapter, set the field to zero (a null pointer).

Each option table must begin with a dword indicating the number

of options in the list. The options listed in the tables represent valid

values that may be selected from the command line. The default
value (if none is specified) is the first unused value in the table.

5 – 48 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

Parameters
(continued)

A sample option list follows:

PortOptionTable dd 4 ;number of port options
dd 340h ;first (default) port
dd 344h ;second possible port
dd 320h ;third possible port
dd 324h ;last possible port

NeedsBitMap

A bit map (dword value) telling ParseDriverParameters which
hardware options the driver requires, as follows:

NeedsIOSlotBit equ 0001h
NeedsIOPort0Bit equ 0002h
NeedsIOLength0Bit equ 0004h
NeedsIOPort1Bit equ 0008h
NeedsIOLength1Bit equ 0010h
NeedsMemoryDecode0Bit equ 0020h
NeedsMemoryLength0Bit equ 0040h
NeedsMemoryDecode1Bit equ 0080h
NeedsMemoryLength1Bit equ 0100h
NeedsInterrupt0Bit equ 0200h
NeedsInterrupt1Bit equ 0400h
NeedsDMA0Bit equ 0800h
NeedsDMA1Bit equ 1000h

Note: It is invalid to indicate that an entry is required by setting
the associated bit in the NeedsBitMap while having a null pointer

in the AdapterOptionStructure or having the number of options in
an option table indicated as zero.

CommandLine

Pointer to command line passed to the driver’s Initialize routine on

the stack at load time.

ScreenHandle

Pointer to the driver’s screen display. NetWare also passed this
value to the driver’s initialization routine on the stack at load time.

(unused parameters)

Unused parameters should be set to zero.

Return Value EAX is zero if successful. A non-zero value indicates conflict with
existing hardware or bad command line parameters.

Requirements This routine may only be called from a blocking process level. In
addition, it may only be used during DriverInitialize, since the driver’s
ScreenHandle is valid only during the initialization routine.

Version 1.00 5 – 49



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Description ParseDriverParameters allows a driver’s initialization routine to obtain
hardware configuration information from the load command line. This
may include the slot number, I/O ports and ranges, memory decode
addresses and lengths, interrupts, and/or DMA addresses. The
information obtained from the command line is placed in the
appropriate fields of the driver’s IOConfigurationStructure.

For example, a load command could contain the following specifications:

load drivername port=300:20, int=3

In this case, the adapter will occupy I/O ports 300h to 31Fh and use
interrupt 3. The load command line keywords associated with each
field of the IOConfigurationStructure are listed in Appendix A

ParseDriverParameters fills in the IOConfigurationStructure associated
with an adapter utilizing tables provided by the driver, the command
line parameters, and operator input. The following describes this
process:

The driver specifies which hardware configuration options the
adapter needs with the NeedsBitMap. Using this mask as a guide,
ParseDriverParameters collects the required information from the
command line, validates the parameters against the values provided
via the AdapterOptionStructure, and fills out the appropriate fields
of the IOConfigurationStructure.

If the NeedsBitMap requires data for a particular option and Parse-
DriverParameters cannot find the data on the command line, it will
prompt the console operator for the data, showing as a default the
first unused entry in the option table pointed to by the associated
field in the AdapterOptionStructure.

Once all required fields of the IOConfigurationStructure have been
filled in, the hardware configuration must be registered with the OS
using the NetWare routine, RegisterHardwareOptions. This routine
checks for conflicts with existing hardware and reserves the specified
file server options for the adapter’s use (if no conflicts exist).

Note: Refer to Appendix C, "Obtaining Configuration Information," for
detailed instructions on determining the hardware configuration for
EISA and MCA machines.

Custom Command Line Keywords

The driver may implement additional command line keywords that it
alone recognizes. If the driver defines custom keywords, it must parse
them from the command line itself. The driver should not adjust the
the pointer to the command line or delete the custom keywords from the
command line text, since the ParseDriverParameters routine will simply
ignore the additional parameters.

5 – 50 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

Example

DriverInitialize proc

CPush
mov ebp, esp
pushfd
cli

push [ebp+Parm1] ;Screen Handle
push [ebp+Parm2] ;Command Line pointer
push NeedsIOPort0Bit + NeedsInterrupt0Bit ;need I/O port & interrupt
push 0 ;unused
push 0 ;unused
push OFFSET AdapterOptions ;card options template
push 0 ;unused
push OFFSET DriverConfiguration ;IOConfig structure
call ParseDriverParameters ;fill out IOConfig Struct
add esp, 8 * 4 ;clean up stack
or eax, eax ;check for errors
jnz ErrorParsingCommandLine ;jump on error

push 0 ;unused
push OFFSET DriverConfiguration ;IOConfig structure
call RegisterHardwareOptions ;register configuration
add esp, 2 * 4 ;clean up stack
or eax, eax ;check for errors
jnz ErrorRegisteringHardware ;jump on error

See Also AdapterOptionStructure, IOConfigurationStructure

RegisterHardwareOptions, DeRegisterHardwareOptions

Appendix C, "Obtaining Configuration Information"

ReadEISAConfig

Version 1.00 5 – 51



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

QueueSystemAlert
[Non-Blocking]

Syntax long QueueSystemAlert (

long TargetStation , long TargetNotificationBits ,

long ErrorLocus , long ErrorClass ,

long ErrorCode , long ErrorSeverity ,

byte *ControlString , args . . . ) ;

Parameters TargetStation

Connection number of the affected station. This is normally set to

zero meaning that no single station is affected. Supply a zero for

the console.

TargetNotificationBits: Destinations of the notification.

NOTIFY_CONNECTION_BIT 01h
NOTIFY_EVERYONE_BIT 02h
NOTIFY_ERROR_LOG_BIT 04h
NOTIFY_CONSOLE_BIT 08h

ErrorLocus: Locus of the error.

LOCUS_UNKNOWN 00h
LOCUS_LANBOARDS 04h

ErrorClass: Class of the error.

CLASS_UNKNOWN 00h
CLASS_TEMP_SITUATION 02h
CLASS_HARDWARE_ERROR 05h
CLASS_BAD_FORMAT 09h
CLASS_MEDIA_FAILURE 11h
CLASS_CONFIGURATION_ERROR 15h
CLASS_DISK_INFORMATION 18h

ErrorCode: Error codes for the system log.

OK 00h
ERR_HARD_FAILURE FFh

ErrorSeverity: Severity of the error.

SEVERITY_INFORMATIONAL 00h
SEVERITY_WARNING 01h
SEVERITY_RECOVERABLE 02h
SEVERITY_CRITICAL 03h
SEVERITY_FATAL 04h
SEVERITY_OPERATION_ABORTED 05h

5 – 52 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

Parameters
(continued)

ControlString

Pointer to a null-terminated control string similar to the standard

printf string used in the output routine. The string can include

embedded returns, linefeeds, tabs, bells, and % format specifiers
(except floating point).

args...

The routine can take a variable number of arguments as required
by the control string format specifiers.

Return Value EAX is 0 if successful. A value of 1 means the alert was not available.

Requirements This routine may be called at either process or interrupt time.
Interrupts may be in any state on entry and will remain unchanged.

Description QueueSystemAlert provides system notification of driver hardware or
software problems during regular operation of the board (at times other

than during the driver initialization procedure).

Example

TransmitTimeoutMessage db ’Transmit failure on board #%d’, 0

movzx eax, [ebx].CDriverBoardNumber ; argument: board number
push eax
push OFFSET TransmitTimeoutMessage ; ControlString
push SEVERITY_RECOVERABLE ; ErrorSeverity
push OK ; ErrorCode
push CLASS_HARDWARE_ERROR ; ErrorClass
push LOCUS_LANBOARDS ; ErrorLocus
push NOTIFY_ERROR_LOG_BIT OR NOTIFY_CONSOLE_BIT
mov eax, 0
push eax ; station #, not used
call QueueSystemAlert
add esp, 8*4 ; clean up stack

See Also OutputToScreen

Version 1.00 5 – 53



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

ReadEISAConfig
[Register-Based Routine]

On Entry CH=Block CL=Slot

On Return EAX contains:
00h = successful (zero flag is also set)
01h = Int 15h vector removed
80h = invalid slot number
81h = invalid function number
82h = nonvolatile memory corrupt
83h = empty slot
86h = invalid BIOS routine called
87h = invalid system configuration

ESI points to the buffer containing the configuration.

EDX and EDI are destroyed.

Requirements This routine may only be called at process time, normally during
initialization. Interrupts may be in any state on entry and that state
is preserved on return. However, interrupts might be enabled during
the execution of this procedure.

Description This procedure reads the EISA configuration block for the specified slot
into a 320-byte buffer. Normally the driver will call this routine with
Block = 0. If the information is not found in this block, continue calling
this routine and incrementing the Block number until the right block
is received (or you run out of blocks).

The configuration block returned should be copied into local memory.
Once the driver returns to the operating system or calls a blocking
procedure, the block information is no longer valid.

Example

DriverInitialize proc

movzx ecx, DriverConfiguration.CSlot ; ch = block 0, cl = slot

ReadConfigBlockLoop:

call ReadEISAConfig ; get config block
jnz ErrorReadingEISAConfig ; check for errors
inc ch ; set up for next block
test BYTE PTR [esi+n], Valid_Data ; does buffer contain desired data
jz ReadConfigBlockLoop ; try next config block

See Also ParseDriverParameters

5 – 54 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

ReadRoutine
[Blocking]

Syntax long ( *ReadRoutine ) (

long CustomFileHandle ,

long CustomDataOffset ,

long *CustomDataDestination ,

long CustomDataSize ) ;

Parameters CustomFileHandle

Module handle of the .MSL file. This value is passed to the driver’s
initialization routine as the LoadableModuleFileHandle parameter.

CustomDataOffset

Starting offset in the file. This value is the CustomDataOffset

parameter passed to the driver’s initialization routine.

CustomDataDestination

Location of a driver allocated buffer that the ReadRoutine should
use as the destination for the custom data file.

CustomDataSize

Amount of custom data (in bytes) to read. This value is the

CustomDataSize parameter passed to the driver’s initialization
routine.

Return Value EAX is zero if successful. A non-zero value indicates failure.

Requirements This routine may be called only during initialization. Interrupts may
be enabled on return.

Description Some drivers may require custom firmware or data to download to the
adapter during initialization. The ReadRoutine allows drivers to read
custom data or firmware into system memory during initialization.

The entry point of the ReadRoutine is not exported by the operating
system. A pointer to the routine is passed on the stack to the driver
during initialization and must be called indirectly. The only place it is
valid is in the initialization routine.

With the exception of the CustomDataDestination, Netware passes all
the parameters required by this routine on the stack to the driver’s
initialization routine. Before this routine is called, the driver must
allocate a buffer that the ReadRoutine uses as the destination for the
custom data file.

Version 1.00 5 – 55



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

The NetWare linker actually appends the custom data file to the
MSL module at link time. When the driver is loaded, NetWare loads
only the driver’s code, leaving the file open for the driver to handle its
custom data. To attach a custom file to the driver module, use the
CUSTOM keyword in the driver’s linker definition file followed by the
name of the custom file.

Note: The following example assumes that the custom file has been attached
to the driver module as described above.

Example

DriverInitialize proc

CPush
mov ebp, esp
pushfd
cli
•
•
•
push MemoryRTag ; push memory resource tag
mov eax, [ebp + Parm8] ; get CustomDataSize from stack
push eax ; push size
call Alloc ; allocate memory
add esp, 2*4 ; clean up stack
or eax, eax ; did we get it?
jz ErrorGettingMemory ; error exit if not
mov FirmwareBufferPtr, eax ; save firmware buffer

mov eax, [ebp + Parm8] ; CustomDataSize
push eax ;
push FirmwareBufferPtr ; CustomDataDestination
mov eax, [ebp + Parm7] ; CustomDataOffset
push eax ;
mov eax, [ebp + Parm5] ; LoadableModuleFileHandle
push eax ;

mov ebx, [ebp + Parm6] ; ReadRoutine ptr
call ebx ; call read routine

cli ; clear interrupts
add esp, 4*4 ; adjust the stack
or eax, eax ; check for read errors
jnz ReadError ; jump if errors
•
•
•

See Also DriverInitialize, AllocateResourceTag

Alloc, AllocateMappedPages, AllocBufferBelow16Meg

5 – 56 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

ReceiveServerCommPointer
[Non-blocking, Register-based Routine]

Syntax call [ReceiveServerCommPointer]

On Entry The registers must be set to the values in the message header of the
received message:

EAX OS Parameter1
EBX OS Parameter2
ECX OS Parameter3 (data length, may be zero)
EDX OS Parameter4
ESI OS Parameter5 (data pointer, if ECX is non-zero)
EDI OS Parameter6

On Return

EAX completion code (defined below)
EBX assume EBX is destroyed
ECX data length (may be zero)
EDX callback address if AL=1, otherwise assume EDX

is destroyed
ESI data destination pointer (if ECX is non-zero)
EDI (not needed after this call)

Requirements This routine is called from interrupt level. Interrupts must be disabled
on entry and will remain disabled.

Description ReceiveServerCommPointer is a global variable defined by the OS. It
contains a pointer to the current procedure used to notify the OS when
a message is received from the other server. Before making the indirect
call to this routine, the driver must set the registers to the values
stored in the message header sent from the other server. This routine
then returns a completion code indicating to the driver what action to
take with the message data.

This routine must be called for each message received from the other
server. If there are multiple messages in a packet, it is the driver’s
responsibility to deliver the individual messages.

The OS may call DriverSend during this routine; therefore, the driver
must be capable of sending a packet at this point.

Completion Codes

The completion code (CCode) returned by this routine will be a number
between 0 and 4 indicating what action to take with the message data.
The CCode values are described in the following section.

Version 1.00 5 – 57



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Note: The OS may modify the ECX (message size) and ESI (message
destination) registers during this call, effectively bypassing or ignoring
the data. The modified values must be used to copy the message if
required, however the driver should save the original message size in
order to adjust the pointers into the received packet.

CCode = 0 (OK: copy message)

The driver should copy ECX bytes of the message data from the
adapter to the destination in system RAM specified by ESI.

Note: ECX and ESI may have been modified by the routine. The
new values returned by this routine must be used for the data copy.

CCode = 1 (OK: copy message and callback)

The driver should copy ECX bytes of the message data from the
adapter to the destination in system RAM specified by ESI.

Note: ECX and ESI may have been modified by this routine. The
values returned from this routine must be used for the data copy.

After copying the data, the driver should callback the receive
handler whose address is specified in EDX. Prior to making the
callback, the registers must be restored to the original message
header values with the exception of ECX and ESI, which should
contain the values returned by this routine.

CCode = 2 (Holdoff message)

This code signals the driver to place the message on hold for
redelivery at a later time. The driver may either send a request
asking the other server to resend the packet or save the packet and
attempt to deliver the message at a later time. Care must be taken
to ensure that messages are not delivered to the OS twice.

The hold state is used by the operating system to throttle the
incoming packets. Since the OS requires messages to be delivered
in sequence, any messages received following the holdoff state
cannot be delivered until the heldoff message is successfully
delivered.

Note: The operating system needs to run before it will be able to
accept the heldoff message. An immediate attempt to redeliver the
message without relinquishing control will be fruitless. Redelivery
can be accomplished by setting up asynchronous or interrupt time
callback events that relinquish control, then trigger an attempt to
redeliver the message. (Refer to the DriverHoldOff and DriverInt-

HoldOff procedure descriptions in Chapter 4, "MSL Driver
Procedures," for more information on implementing redelivery of
heldoff messages.)

5 – 58 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

CCode = 3 (Holdoff message)

Same as CCode 2.

CCode = 4 (Ignore)

The driver should ignore this message and continue on to the next
message.

Acknowledging Messages

Once the driver has successfully delivered the message packet data to
the OS, it should send an acknowledgement to the other server. For
efficiency, only one acknowledgement should be sent to ACK all
messages in the packet.

To minimize latency, the driver can send the acknowledgement before
delivering the messages to the OS (as in the example template in
Appendix E). The driver must then guarantee that the messages are
delivered, otherwise the server states will diverge. The driver must
also be able to receive a second message packet from the other server.

If an acknowledged message is placed on hold and a second message
packet is received, the MSL driver should not acknowledge the second
message packet. Instead, it should begin sending holdoff notifications

once every clock tick, to prevent the other server from inadvertently
timing out on any message packets that have already been sent, but
have not yet received an acknowledgement from this server. This also
has the affect of stopping the flow of messages from the other server
since its driver will normally indicate it can send another message (via
the PacketSizeDriverCanNowHandle variable), only when it receives the
acknowledgement for the last message packet transmitted.

The mirrored server drivers must be capable of receiving acknowledge-
ments (as well as holdoff and emergency notifications) during a message
holdoff state. This is required to prevent a possible “deadlock” situation
in which both servers are waiting on something from the other server
in order to clear the holdoff state.

The MSL driver must also handle error reporting differently when a
message is placed on hold after it has been acknowledged. Refer to the
ServerCommDriverError procedure later in this chapter for information
on error handling.

Version 1.00 5 – 59



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Example

DriverISR proc

;****************************************************************************
;* Message Packet Received *
;****************************************************************************

ISRMessagePacketReceived:

cmp HoldStateFlag, 0 ;if last message packet held...
jne ISRHoldOffMessage ;...hold this one

call TransmitAcknowledgement ;else transmit acknowledgement

(point to the first message header in receive buffer)

ISRProcessMessage:

(read in message header then set registers to these values)

mov eax, MessageHeader.EaxParameter
mov ebx, MessageHeader.EbxParameter
mov ecx, MessageHeader.EcxParameter
mov edx, MessageHeader.EdxParameter
mov esi, MessageHeader.EsiParameter
mov edi, MessageHeader.EdiParameter

call [ReceiveServerCommPointer] ;inform OS of message

mov NewEsiParameter, esi
mov NewEcxParameter, ecx

cmp al, 0
je ISRCopyMessage

cmp al, 1
je ISRCopyMessageAndCallBackOS

cmp al, 4
jb ISRHoldOffMessage

ISRProcessNextMessage:

dec PacketHeader.MSLMessageCount ;1 less message to process
jz ISRReceiveMessageDone ;jump if no more

(point to next message header in receive buffer)

jmp ISRProcessMessage ;hand next msg to OS

5 – 60 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

Example

ISRCopyMessage:

or ecx, ecx ;any data to copy?
jz ISRProcessNextMessage ;if not, process next message

(copy message data to OS memory: NewEcx=size NewEsi=addr)

jmp ISRProcessNextMessage ;process next message

ISRCopyMessageAndCallBackOS:

or ecx, ecx ;any data to copy?
jz ISRCallBackOS ;if not, skip data copy

(copy message data to OS memory: NewEcx=size NewEsi=addr)

ISRCallBackOS:

mov eax, MessageHeader.EaxParameter ;original eax parameter
mov ebx, MessageHeader.EbxParameter ;original ebx parameter
mov ecx, NewEcxParameter ;use new ecx parameter
mov esi, NewEsiParameter ;use new esi parameter

call edx ;call to OS

jmp ISRProcessNextMessage ;process next message

ISRHoldOffMessage:

;****************************************************************************
;* *
;* This example assumes the following: *
;* *
;* 1. The received packet can not be left on the adapter after *
;* reading the message header. *
;* 2. The adapter has a receive buffer for more than one *
;* maximum size packet. *
;* *
;****************************************************************************

(copy the message packet into the receive/hold buffer)
(update all receive/hold buffer pointers)

inc HoldStateFlag ;indicate hold state
cmp HoldStateFlag, 2 ;check for previous holds
je ISRReceiveMessageDone ;if so we’re done here

call TransmitHoldNotification ;else notify other server
;of hold state

;************************************************************************
;* Setup callbacks for message redelivery attempts *
;************************************************************************

push OFFSET HoldOffEvent
call ScheduleSleepAESProcessEvent
add esp, 1 * 4

mov edx, OFFSET IntHoldOffEvent
call ScheduleInterruptTimeCallBack

jmp ISRReceiveMessageDone

Version 1.00 5 – 61



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

RegisterForEventNotification

Syntax long RegisterForEventNotification (

struct ResourceTagStructure *ResourceTag ,

long EventType ,

long Priority ,

void ( *WarnProcedure ) (

void ( *OutputRoutine ) ( byte *ControlString,...) ,

long Parameter ) ,

void ( *ReportProcedure ) ( long Parameter ) ) ;

Parameters ResourceTag

Resource tag with an EventSignature obtained by the driver for
event notification. (see AllocateResourceTag)

EventType

Type of event for which notification is desired.

Priority

Order in which registered callback routines will be called.

WarnProcedure

Pointer to a callback routine which will be called when EventCheck
is called.

OutputRoutine

Used to warn the user against a particular event.

ControlString

Pointer to a null-terminated string similar to a standard printf
control string that will be used in the OutputRoutine. The string

can include embedded returns, linefeeds, tabs, bells, and % format

specifiers (except floating point).

args...

The OutputRoutine can take a variable number of arguments as

required by the ControlString format specifiers.

ReportProcedure

Pointer to a callback routine that is called when EventReport is
called.

Parameter(s)

32-bit value that is defined according to the event type.

Return Value EAX contains an EventID that should be used when calling
UnRegisterEventNotification. A value of zero indicates failure to

register the event notification.

5 – 62 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

Description RegisterForEventNotification is called at initialization to register a
driver-defined routine for callback if a particular event type occurs. For
example, the driver can register a routine so that it can be notified if
the server is going to exit to DOS. This will give the driver a chance to
service the physical board, to cancel any AES or timer events, and to
allow bus master devices to return pre-allocated resources and
shutdown the adapter before the OS exits to DOS. This is especially
important for DMA or bus master devices that need to be shutdown to
prevent them from writing to memory after DOS gets control.

This procedure will add the specified routines to the event list when an
event is reported. The WarningProcedure will be called when an
EventCheck is called by the operating system, and the ReportProcedure
will be called when an EventReport is called by the operating system.
These routines will be called according to priority. The parameter
passed in when the event is reported will be passed to the Warning-
Procedure or ReportProcedure when it is called.

When the type of event (defined by EventType) occurs, the operating
system calls the specified callback routine. The types of defined events
are listed below:

EVENT_DOWN_SERVER 04h

The parameter is undefined. The warn routine and the report
routine will be called before the server is shut down.

EVENT_CHANGE_TO_REAL_MODE 05h

The parameter is undefined. The report routine will be called
before the server changes to real mode and must not go to sleep.

EVENT_RETURN_FROM_REAL_MODE 06h

The parameter is undefined. The report routine will be called
after the server returns from DOS and must not go to sleep.

EVENT_EXIT_TO_DOS 07h

The parameter is undefined. The report routine will be called
before the server exits to DOS.

The order in which the callback routines will be called is determined by
the priority parameter with the priorities being notified first. The
available priorities are listed below:

EVENT_PRIORITY_OS 00h
EVENT_PRIORITY_APPLICATION 20h
EVENT_PRIORITY_DEVICE 40h

Version 1.00 5 – 63



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

When the WarnProcedure is called, it is passed a Parameter and a
pointer to an OutputRoutine that the driver should use to warn the user
against the occurrence of a particular event. Nulls may be passed to
the routine.

The ReportProcedure is passed a Parameter containing additional event
specific information when it is needed.

Example

push OFFSET ExitOSEvent ;Address of exit routine
push 0
push EVENT_PRIORITY_OS ;Set priority level
push EVENT_EXIT_TO_DOS ;Set what event
push EventResourceTag ;Resource event tag

call RegisterForEventNotification

add esp, 4 * 5 ;Clear up stack
or eax, eax ;Did OS patch in call?
jz EventPatchError ;Error did not add procedure
mov EventID, eax

5 – 64 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

RegisterHardwareOptions
[Non-Blocking]

Syntax long RegisterHardwareOptions (

struct IOConfigurationStructure *IOConfig ,

void unused ) ;

Parameters IOConfig

Pointer to the adapter’s completed IOConfiguration structure.

unused

This parameter is used only by LAN drivers and should be set to

zero for MSL drivers.

Return Value EAX is zero if the hardware options were successfully registered for the
adapter. A non-zero value indicates the routine failed to register the

hardware options due to a conflict with existing hardware or a bad
command line parameter.

Requirements This routine must only be called at process time (typically during the
driver’s initialization routine). Interrupts can be in any state on entry
and that state will not change during the execution of this routine.

Description The driver calls RegisterHardwareOptions to reserve the hardware
configuration options required for a particular physical board (such as
port base and range, memory decode addresses and lengths, interrupt
number, and DMA channel usage). This routine requires a pointer to
an IOConfigurationStructure containing the specified hardware options
to reserve. If any of the hardware options are already in use, the
routine returns an error code.

The reserved hardware options must be released before the driver is
removed using the DeRegisterHardwareOptions routine.

This routine is normally used in conjunction with the ParseDriver-

Parameters routine (which parses the configuration options from the
load command line).

See Also DeRegisterHardwareOptions

DriverInitialize

ParseDriverParameters

IOConfigurationStructure

Appendix C, "Obtaining Configuration Information"

Version 1.00 5 – 65



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Example

DriverInitialize proc

CPush
mov ebp, esp
pushfd
cli

;*** Parse Hardware Options ***

push [ebp+Parm1] ;Screen Handle
push [ebp+Parm2] ;Command Line pointer
push NeedsIOPort0Bit + NeedsInterrupt0Bit ;need I/O port & interrupt
push 0 ;unused
push 0 ;unused
push OFFSET AdapterOptions ;card options template
push 0 ;unused
push OFFSET DriverConfiguration ;IOConfig structure
call ParseDriverParameters ;fill out IOConfig Struct
add esp, 8 * 4 ;clean up stack
or eax, eax ;check status
jnz ErrorParsingCommandLine ;jump on error

;*** Register Hardware Options ***

push 0 ;unused
push OFFSET DriverConfiguration ;IOConfig structure
call RegisterHardwareOptions ;register hardware
add esp, 2*4 ;restore the stack
or eax, eax ;check status
jnz ErrorRegisteringHardware ;jump on error

5 – 66 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

RegisterServerCommDriver
[Blocking]

Syntax long RegisterServerCommDriver (

struct ResourceTagStructure *ResourceTag ,

struct IOConfigurationStructure *IOConfig ,

long (*SendProcedure) ( ) ,

long (*BuildSendProcedure) ( ) ,

long (*EmergencySendProcedure) ( ) ,

long (*ControlProcedure) ( ) ) ;

Parameters ResourceTag

Resource tag with an MSLSignature obtained by the driver to

register with the Mirrored Server Link interface.

IOConfig

Pointer to the driver’s completed IOConfiguration structure.

SendProcedure

Pointer to the DriverSend procedure.

BuildSendProcedure

Pointer to the DriverBuildSend procedure.

EmergencySendProcedure

Pointer to the DriverEmergencySend procedure.

ControlProcedure

Pointer to the DriverControl procedure.

Return Value EAX is zero if the driver is successfully registered. A non-zero

indicates failure.

Requirements This routine may only be called from the Blocking Process level (during
the DriverInitialize procedure).

Description This routine is called to register an MSL driver with the Mirrored
Server Link interface.

Note: Upon successful completion of the this call, the driver must
initialize the global variables, MaximumCommDriverDataLength and
PacketSizeDriverCanNowHandle. Refer to Chapter 3, "Data Structures,
Tables, and Variables", for the descriptions of these variables.

Version 1.00 5 – 67



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Example

DriverInitialize proc

push OFFSET DriverControl ;DriverControl routine
push OFFSET DriverEmergencySend ;DriverEmergencySend routine
push OFFSET DriverBuildSend ;DriverBuildSend routine
push OFFSET DriverSend ;DriverSend routine
push OFFSET DriverConfiguration ;DriverIOConfig structure
push MSLResourceTag ;Resource Tag

call RegisterServerCommDriver

add esp, 6 * 4 ;clean up stack
or eax, eax ;check status
jnz ErrorRegisteringDriver ;jump on error

mov MaximumCommDriverDataLength, MAX_PACKET_DATA_SIZE
mov PacketSizeDriverCanNowHandle, MAX_PACKET_DATA_SIZE

See Also DriverInitialize, DeRegisterServerCommDriver

5 – 68 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

RemovePollingProcedure
[Non-Blocking]

Syntax void RemovePollingProcedure (

void ( *DriverPollProcedure ) ( void ) ) ;

Parameters DriverPollProcedure

Pointer to a polling procedure defined by the driver that was

previously registered with th OS using AddPolling-ProcedureRTag.

Return Value None

Requirements This routine may only be called at process time. Interrupts may be in
any state on entry and will remain unchanged.

Description This procedure is used to remove a driver’s poll routine from the
server’s list of polling procedures. RemovePollingProcedure should be
called when a polled driver unloads.

Example

push OFFSET MyDriverPollProc ;Remove us from poll
call RemovePollingProcedure ;List
add esp, 1 * 4

See Also AddPollingProcedureRTag

Version 1.00 5 – 69



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

ReturnSharedMemoryLinearAddress

Syntax void ReturnSharedMemoryLinearAddress (

long SharedMemoryLinearAddress ) ;

Parameters SharedMemoryLinearAddress

32-bit address returned by the GetSharedMemoryLinearAddress

procedure.

Return Value None

Requirements

Description This procedure is called to return the 32-bit address obtained from
GetSharedMemoryLinearAddress. Because of paging by the operating
system, this resource should be returned to avoid problems.

Example

push SharedRAMSize
push SharedRAMPhysicalAddress
call GetSharedMemoryLinearAddress
add esp, 2*4
mov SharedRAMLogicalAddress, eax

push SharedRAMLogicalAddress
call ReturnSharedMemoryLinearAddress
add esp, 1*4

See Also GetSharedMemoryLinearAddress

5 – 70 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

ScheduleInterruptTimeCallBack
[Non-Blocking, Register-Based Routine]

On Entry EDX points to a TimerDataStructure as shown below.

TimerDataStructure struc
TLink dd ? ;reserved
TCallBackProcedure dd ?
TCallBackEBXParameter dd ?
TCallBackWaitTime dd ?
TResourceTag dd ?
TWorkWakeUpTime dd ? ;reserved
TSignature dd ? ;reserved

TimerDataStructure ends

The reserved fields of this structure are used internally by the
NetWare OS and should not be modified by the driver. The

remaining fields are filled in as follows:

TCallBackProcedure

Pointer to the procedure to be called by the timer tick interrupt
handler. When the procedure is called, interrupts are disabled.

TCallBackEBXParameter (optional)

The value EBX should contain when the call back procedure is

invoked.

TCallBackWaitTime

Amount of time in ticks, before the call back procedure is

invoked.

TResourceTag

Resource tag with a TimerSignature acquired by the driver for
interrupt time call backs.

On Return Assume all registers are destroyed.

Requirements This routine may be called at either process or interrupt time.
Interrupts must be disabled on entry and will remain disabled
throughout this routine.

Description ScheduleInterruptTimeCallBack is used to add an event to the list of
events that will be called by the timer interrupt handler. The specified
procedure will only be called once; the driver must reschedule each time
it wants another callback. The four fields of the structure that are set
by the driver are not changed by the operating system. If the driver
reschedules another callback, it does not need to reinitialize these
fields.

Version 1.00 5 – 71



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

The MSL driver will typically schedule an interrupt time callback to a
driver procedure in order to attempt to redeliver a heldoff message to
the OS or to monitor for and recover from timeout conditions.

Example

RTagMessage_Timer db ’Timer Callback’, 0
IntHoldOffEvent TimerDataStructure <,DriverIntHoldOff,,1,,,>

push TimerSignature
push OFFSET RTagMessage_Timer
push ModuleHandle
call AllocateResourceTag
add esp, 3 * 4
or eax, eax
jz ErrorAllocatingTimerRTag
mov IntHoldOffEvent.TResourceTag, eax

cli
mov edx, OFFSET IntHoldOffEvent
call ScheduleInterruptTimeCallBack

See Also AllocateResourceTag

CancelInterruptTimeCallBack

DriverIntHoldOff

ScheduleNoSleepAESProcessEvent, CancelNoSleepAESProcessEvent

ScheduleSleepAESProcessEvent, CancelSleepAESProcessEvent

5 – 72 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

ScheduleNoSleepAESProcessEvent
[Non-Blocking]

Syntax void ScheduleNoSleepAESProcessEvent (
struct AESEventStructure *EventNode ) ;

Parameters EventNode - Pointer to an AESEventStructure defined as follows:

AESEventStructure struc
AESLink dd ?
AESWakeUpDelayAmount dd ?
AESWakeUpTime dd ?
AESProcessToCall dd ?
AESRTag dd ?
AESOldLink dd ?
MessageTimeOutTime dd ?
AdapterTimeOutTime dd ?

AESEventStructure ends

AESLink
Used internally by the NetWare OS; do not modify this field.

AESWakeUpDelayAmount
Indicates the time interval for waking up your Timeout routine
in system clock ticks (1 tick is approximately 1/18 sec).
Generally, this interval should be small enough to provide
reasonable recovery time, but not so small as to affect overall
server performance.

AESWakeUpTime
Used internally by the NetWare OS; do not modify this field.

AESProcessToCall
A pointer to the routine that will be called once for each
ScheduleNoSleepAESProcessEvent call.

AESRTag
Resource tag with an AESProcessSignature obtained by the
MSL driver during initialization.

AESOldLink
Maintained for backward compatibility.

MessageTimeOutTime
Set this field to the value of ServerCommACKTimeOut when
beginning a message timeout sequence. This value is the
maximum time (in ticks) you should wait for the other server’s
acknowledgment before calling ServerCommDriverError.

AdapterTimeOutTime (optional)
This field is used by adapters that support the transmit
complete feature. When the driver initiates a transmission, it
should set this value to the maximum time (in ticks) to wait for
that transmission to complete. This can be used to detect a
“dead” adapter.

Version 1.00 5 – 73



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Return Value None

Requirements This routine may be called at either process or interrupt time.
Interrupts may be in any state on entry and that state will not be
changed during this routine.

Description ScheduleNoSleepAESProcessEvent sets up a background AES process
(Asynchronous Event Scheduler) that will be executed at a desired
interval. The specified callback procedure will be called at process time
and must be non-blocking. (If the callback procedure must call any
blocking support procedures, use the ScheduleSleepAESProcessEvent.)

The specified procedure will only be called once; the driver must
reschedule each time it wants another callback. The fields of the
structure that are filled in by the driver are not changed by the
operating system. If the driver reschedules another callback, it does not
need to reinitialize these fields.

Example

AES_RTagMessage db ’AES Callback’, 0
TimeOutEvent AESEventStructure <,5,,DriverTimeOut>

push AESProcessSignature
push OFFSET AES_RTagMessage
push ModuleHandle
call AllocateResourceTag
add esp, 3 * 4
or eax, eax
jz ErrorAllocatingAESRTag
mov TimeOutEvent.AESRTag, eax

push OFFSET TimeOutEvent
call ScheduleNoSleepAESProcessEvent
add esp, 1 * 4

See Also AllocateResourceTag

CancelNoSleepAESProcessEvent

DriverTimeOut

ScheduleSleepAESProcessEvent, CancelSleepAESProcessEvent

ScheduleInterruptTimeCallBack, CancelInterruptTimeCallBack

5 – 74 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

ScheduleSleepAESProcessEvent
[Non-Blocking]

Syntax void ScheduleSleepAESProcessEvent (
struct AESEventStructure *EventNode ) ;

Parameters EventNode - Pointer to an AESEventStructure defined as follows:

AESEventStructure struc
AESLink dd ?
AESWakeUpDelayAmount dd ?
AESWakeUpTime dd ?
AESProcessToCall dd ?
AESRTag dd ?
AESOldLink dd ?
MessageTimeOutTime dd ?
AdapterTimeOutTime dd ?

AESEventStructure ends

AESLink
Used internally by the NetWare OS; do not modify this field.

AESWakeUpDelayAmount
Indicates the time interval for waking up your callback routine
in system clock ticks (1 tick is approximately 1/18 sec).
Generally, this interval should be small enough to provide
reasonable recovery time, but not so small as to affect overall
server performance.

AESWakeUpTime
Used internally by the NetWare OS; do not modify this field.

AESProcessToCall
A pointer to the routine that will be called once for each
ScheduleSleepAESProcessEvent call.

AESRTag
Resource tag with an AESProcessSignature obtained by the
MSL driver during initialization.

AESOldLink
Maintained for backward compatibility.

MessageTimeOutTime
Set this field to the value of ServerCommACKTimeOut when
beginning a message timeout sequence. This value indicates the
maximum time (in ticks) you should wait for the other server’s
acknowledgment before calling ServerCommDriverError.

AdapterTimeOutTime (optional)
This field is used by adapters that support the transmit
complete feature. When the driver initiates a transmission, it
should set this value to the maximum time (in ticks) to wait for
that transmission to complete. This can be used to detect a
“dead” adapter.

Version 1.00 5 – 75



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Return Value None

Requirements This routine may be called at either process or interrupt time.
Interrupts may be in any state on entry and that state will not be
changed during this routine.

Description ScheduleSleepAESProcessEvent sets up a background AES process
(Asynchronous Event Scheduler) that will be executed at a designated
interval. The specified callback procedure will be called at process time
and may perform blocking calls during its execution. (If the callback
procedure does not use any blocking support procedures, use the
ScheduleNoSleepAESProcessEvent procedure instead.)

The specified procedure will only be called once; the driver must
reschedule each time it wants another callback. The fields of the
structure that are filled in by the driver are not changed by the
operating system. If the driver reschedules another callback, it does not
need to reset these fields.

Example

AES_RTagMessage db ’AES Callback’, 0
HoldOffEvent AESEventStructure <,0,,DriverHoldOff>

push AESProcessSignature
push OFFSET AES_RTagMessage
push ModuleHandle
call AllocateResourceTag
add esp, 3 * 4
or eax, eax
jz ErrorAllocatingAESRTag
mov HoldOffEvent.AESRTag, eax

push OFFSET HoldOffEvent
call ScheduleSleepAESProcessEvent
add esp, 1 * 4

See Also AllocateResourceTag

CancelSleepAESProcessEvent

DriverHoldOff

ScheduleNoSleepAESProcessEvent, CancelNoSleepAESProcessEvent

ScheduleInterruptTimeCallBack, CancelInterruptTimeCallBack

5 – 76 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

SendServerCommCompletedPointer
[Non-Blocking, Register-Based Routine]

Syntax call [SendServerCommCompletedPointer]

On Entry EBP is the number of messages being Acknowledged.

On Return Assume all registers are destroyed.

Requirements This routine is called from the Interrupt level. Interrupts must be
disabled on entry and will remain disabled.

Description SendServerCommCompletedPointer is a global variable containing a
pointer to the current routine used to notify the OS of the number of
messages being acknowledged by the other server. The SFT III
operating system requires all messages to be delivered and
acknowledged in the order they were given to the driver.

After the driver notifies the OS of the acknowledgements, it must
transmit any messages that the OS queued up while the driver was
busy transmitting that last message packet. (Refer to the GetNext-
PacketPointer procedure for a description of this process.)

Example

DriverISR proc

;****************************************************************************
;* Acknowledgement Received *
;****************************************************************************

ISRAckReceived:

cmp MessageInProgress, TRUE ;validate ack
jne CheckAdapterStatus ;

;************************************************************************
;* Cancel Message TimeOut Sequence *
;************************************************************************

mov MessageInProgress, FALSE ;clear flag
mov TimeOutEvent.MessageTimeOutTime, 0 ;stop message timer

;************************************************************************
;* Notify OS of the acknowledgement(s) *
;************************************************************************

mov ebp, TxPacketMessageCount ;get # of messages sent
add ReceiveAckCount, ebp ;update statistics counter
call [SendServerCommCompletedPointer] ;notify OS of ACKs

;(use indirect call)

See Also DriverISR
GetNextPacketPointer

Version 1.00 5 – 77



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

ServerCommDriverError
[Non-Blocking]

Syntax void ServerCommDriverError ( ErrorCode ) ;

Parameters ErrorCode
Cause for the error in mirrored server communications.

HARDWARE_ERROR equ 00h
TIME_OUT_ERROR equ 01h
OTHER_SERVER_DEAD_ERROR equ 02h

(These error codes are found in the include file MSL.INC)

Return Value None

Requirements This routine may be called at either Interrupt or Process time.
Interrupts must be disabled on entry.

Description The MSL driver calls this procedure to notify the operating system of
an error in mirrored server communications. This error may be due to
an unrecoverable hardware failure, an unacknowledged message
transmission, or an emergency notification from the other server.

If the MSL driver detects an unrecoverable hardware error, call Server-
CommDriverError with an error code of 0 (HARDWARE_ERROR).

If the MSL driver sends a message packet, and does not receive a
message acknowledgement from the other server before the timeout
limit is reached, ServerCommDriverError should be called with an error
code of 1 (TIME_OUT_ERROR).

If the MSL driver receives an emergency notification from the other
mirrored server, ServerCommDriverError should be called with an
error code of 2 (OTHER_SERVER_DEAD_ERROR).

Important: Normally, the driver calls ServerCommDriverError immediately upon
detection of an error. However, when in a message holdoff state (see
ReceiveServerCommPointer), any heldoff messages that have already
been acknowledged must be delivered to the OS before reporting the
error. The driver should flag the error, finish delivering all
acknowledged messages, and only then notify the OS of the detected
error. The driver must report errors in this manner to preserve the
mirrored state of the servers.

5 – 78 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

Note: It is not necessary to call ServerCommDriverError in the DriverRemove
routine. The OS is notified that the MSL driver is being unloaded
when DeRegisterServerCommDriver is called.

Example

push TIME_OUT_ERROR ;error code
call ServerCommDriverError ;report error to OS
add esp, 1*4 ;clean up stack

Version 1.00 5 – 79



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

SetHardwareInterrupt
[Non-Blocking]

Syntax long SetHardwareInterrupt (
long HardwareInterruptLevel ,
void ( *InterruptProcedure ) ( void ) ,
struct ResourceTagStructure *ResourceTag ,
long EndOfChainFlag ,
long ShareFlag ,
long *EOIFlag ) ;

Parameters HardwareInterruptLevel
The hardware interrupt level.

InterruptProcedure
Pointer to the interrupt procedure that will be assigned to the
specified interrupt.

ResourceTag
Resource tag with an InterruptSignature acquired by the driver for
setting up interrupt service. (see AllocateResourceTag)

EndOfChainFlag
This flag indicates whether a shared interrupt ISR is placed on the
front or the back of the chained interrupt queue. If this flag is set
to 0, the ISR is to be placed on the front of the queue (non-shared
interrupts should use 0). If this flag is set to 1, and the ShareFlag
is also set to 1, the ISR should be placed at the end of the queue.

CHAIN_FIRST 0
CHAIN_LAST 1

ShareFlag
Flag indicating whether interrupts may be shared by the device
and the driver with other boards and drivers. A value of 1
indicates the interrupt can be shared; a value of 0 indicates the
interrupt is non-sharable.

CHAIN_SHARE_BIT 1

CHAIN_SET_REAL_MODE 4 (also set for real mode)

EOIFlag
Pointer to a double-word flag that, on return from this procedure,
indicates if a second EOI is required for this interrupt.

If on return, this flag is zero, only one EOI will be required for the
interrupt. If this flag is non-zero, and the second PIC will also
need an EOI. Always EOI the slave (or secondary) PIC first, and
then EOI the master (or primary) PIC second.

5 – 80 Version 1.00



Chapter 5 • NetWare SFT III Support Routines

Return Value EAX contains:
0 = Successful
1 = Invalid parameter
2 = Invalid sharing mode
3 = Out of memory

Requirements This procedure must only be called at process time. Interrupts must be
disabled on entry and will remain disabled throughout this routine.

Description SetHardwareInterrupt allocates the specified interrupt and provides the
OS interrupt handler with the driver’s ISR entry point.

The operating system fields the actual interrupt. When the driver’s ISR
is called, the direction is cleared, system interrupts are disabled, all
registers are saved, and segment registers are set up. The driver only
needs to EOI the PIC, service the interrupt, and return (do not use
iretd, since the OS issues an iretd upon completion).

Note: If the driver needs to change the direction flag, it should do so
with interrupts disabled and then restore the direction flag to the
cleared state.

Example

DriverInitialize proc

push OFFSET ExtraEOIFlag
push CHAIN_SET_REAL_MODE
push 0
push InterruptResourceTag
push OFFSET DriverISR
movzx eax, BYTE PTR DriverConfiguration.CInterrupt
push eax

call SetHardwareInterrupt

add esp, 6 * 4
or eax, eax
jnz ErrorSettingInterrupt

DriverInitialize endp

DriverISR proc

ret

DriverISR endp

See Also ClearHardwareInterrupt, AllocateResourceTag

DriverInitialize

Version 1.00 5 – 81



Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

UnRegisterEventNotification

Syntax long UnRegisterEventNotification ( long EventID ) ;

Parameters EventID

Value obtained when RegisterForEventNotification was called.

Return Value EAX is zero (0) if successful; a value of one (1) indicates failure.

Requirements This routine should be called when the driver is being unloaded (during
the DriverRemove procedure).

Description UnRegisterEventNotification is called to unhook the driver from event
notification.

Note: Do NOT call this routine from within the routine that was called by
RegisterforEventNotification.

Example

DriverRemove proc

push EventID ;Unhook from OS exit
call UnRegisterEventNotification ;Call OS to unhook
add esp, 1*4 ;Clear stack

DriverRemove endp

5 – 82 Version 1.00


